
02/03/2026

Decentralized Custody, Privacy and More

Zenrock is on a mission to expand and grow what is possible onchain
with products and services users actually want. Our technology stack
and deep cryptographic and cross-chain expertise allow us to venture
into areas previously untapped.

$ROCK is the value capture mechanism for the Zenrock ecosystem,
including all products developed by Zenrock Labs or by third parties
leveraging Zenrock's infrastructure.

Overview

Zenrock: A permissionless ecosystem supported by Zenrock Labs and the
Zenrock Foundation.

zrChain: A purpose-built Layer 1 for distributed multi-party computation
(dMPC). It is flexible infrastructure powering everything in the Zenrock
ecosystem

Decentralized Custody Tokens (DCTs): Cross-chain assets secured by
dMPC, eliminating centralized vaults and single points of failure. The first
two DCTs, zenBTC and zenZEC, are live on Solana

Hush Protocol: A Zcash inspired privacy layer on Solana. Shield assets,
transfer privately, earn yield, and withdraw anywhere without exposing your
wallets

Future Products: dMPC unlocks use cases across DeFi, privacy, identity,
key management, and beyond. Zenrock enables the development of
products and services that solve real problems in DeFi and cloud

$ROCK benefits from ecosystem growth: Every product built on
zrChain, by Zenrock Labs or anyone else, flows revenue through the same
tokenomics. More products, more fees, more value to $ROCK

Zenrock Comprehensive Litepaper

[1] This Litepaper reflects the plans and expectations of its authors as of the date listed on the first page. Plans and circumstances
can change, so we cannot assure that it will be accurate as to future events, developments, or plans, and it should not be relied on
with respect to any such events, developments, or plans.

zrChain is a Delegated Proof-of-Stake chain built on the Cosmos SDK, purpose-
built to run distributed multi-party computation with enshrined oracles that
enable secure and complex cross-chain operations.

At the core of Zenrock's dMPC is a threshold signature scheme (TSS). To produce
a valid signature, multiple parties exchange key fragments, but the private key is
never assembled. No participant, including Zenrock, ever has enough
information to reconstruct it. The key doesn't exist in any single location
because it was never created in full. Only mathematical fragments exist.

This allows zrChain to control wallets on any third-party blockchain without any
party ever knowing the underlying private key.

zrChain

2

dMPC signature instructions can only originate from zrChain, making
the entire signing process decentralized. Through Cosmos Vote Extensions
(a mechanism allowing validators to include additional data in their consensus
votes), each validator runs an enshrined oracle sidecar as part of their node.

This sidecar monitors events on external chains (for example, a deposit event on
Bitcoin) and submits them directly into zrChain's core consensus process.
Validators collectively observe the event, reach consensus, and only then does
the chain instruct the dMPC to act.

By enshrining the oracle mechanism directly into core consensus,
zrChain ensures that as long as the chain itself is secure, every
instruction passed to the dMPC is legitimate.

zrChain launched with a genesis set of 8 dMPC operators and 60+ validators.

These infrastructure providers possess significant cumulative stake across 50+
chains with geographic distribution across 22+ countries. Over time, the dMPC
operator set will expand to 16, then 32, each time increasing the cryptographic
threshold and security guarantees.

3

Our system combines distributed Multi-Party Computation (dMPC) with
hardware-backed secure enclaves to provide strong cryptographic security,
operational resilience, and verifiable trust — without relying on a single trusted
machine or operator.

Core Principle

Private keys are never stored or reconstructed in full. Instead, they are:

Cryptographically split across multiple independent parties using MPC

Executed inside secure enclaves, which provide hardware-enforced isolation
and runtime integrity guarantees

This layered approach ensures that both key material and execution logic remain
protected, even in the presence of compromised infrastructure. Even if an
attacker gains control over parts of the hosting environment, they cannot extract
private keys or manipulate signing behavior, because key material is
cryptographically distributed and all signing operations are confined to attested,
hardware-isolated environments.

Distributed Multi-Party Computation
with Secure Enclaves

4

Role of Secure Enclaves

A secure enclave is a protected execution environment provided by modern
hardware. Code running inside an enclave is:

Isolated from the host operating system and hypervisor

Protected from memory inspection or tampering

Able to produce cryptographic attestations proving what code is running

In our architecture, each MPC participant runs inside its own enclave, ensuring
that:

Key shares are never exposed to the host machine

Signing logic cannot be modified without detection

Even privileged system access cannot extract sensitive material

5

dMPC Signing Flow with Enclaves

Distributed Key Generation: The private key is generated collaboratively by
multiple enclave-resident participants using an MPC protocol. Each enclave
receives a unique key share. The full private key never exists anywhere.

Attested Execution: Each enclave can produce a signed attestation proving the
exact MPC code it is running and that the code is executing inside genuine
enclave hardware. Only attested enclaves are permitted to participate.

Isolated Key Storage: Key shares are encrypted inside their respective enclaves
and cannot be accessed by the host system, administrators or cloud provider.
They can only be accessed inside the enclave.

Signing Request: When a transaction needs to be signed, a request is sent to
the required number of enclaves.

Distributed Enclave Signing: Each enclave computes a partial signature using
its internal key share. These partial signatures reveal no information about the
private key.

Signature Assembly: The partial signatures are combined into a standard
blockchain signature, indistinguishable from one produced by a single private
key.

At no point is the private key reconstructed — inside or outside an
enclave.

6

Security Features

Defense in Depth:

MPC prevents any single party from controlling a key

Enclaves prevent key shares from being extracted or tampered with

Attestation ensures only approved code can participate

Compromise Resistance: An attacker would need to breach multiple
independent systems, defeat hardware-level isolation, and do so simultaneously
within a signing threshold. This is substantially harder than compromising a
single HSM, server, or operator.

Verifiable Trust: Because enclaves produce cryptographic attestations, external
systems can verify that signing operations originate from approved, unmodified
code and that keys are being used only within expected security boundaries.

7

Operational Flexibility

Threshold policies (e.g. M-of-N signers)

Node rotation and upgrades without changing public keys

Geographic and administrative separation of trust

Integration with onchain authorization and governance logic

All policy enforcement occurs before and during signing, without weakening key
security.

Secure by Design

Traditional systems focus on protecting a single secret. Our approach removes
the secret entirely.

By distributing key ownership cryptographically and enforcing execution
integrity through hardware isolation, the system ensures that no single
failure (technical or human) can result in key compromise.

This makes MPC with secure enclaves a strong foundation for high-value digital
asset custody, decentralized infrastructure, and systems requiring both security
and availability.

8

zrChain: Technical Architecture

Consensus & Validator Architecture

zrChain uses Delegated Proof-of-Stake with a hybrid validation model. The
validator set includes both standard validators running consensus and a
specialized subset of dMPC operators. This separation allows the network to
scale the validator count for decentralization while maintaining a controlled set of
cryptographic key holders for security-critical operations.

dMPC Integration

The treasury module manages all interactions with the MPC infrastructure.
Signing requests follow this flow:

A module (zenBTC, DCT, or Hush) creates a
specifying the key ID and unsigned transaction 

dMPC operators poll zrChain for pending requests 

Operators execute the GG21 threshold signature protocol (detailed in the
previous section) 

Each operator submits their signature share to zrChain 

Once sufficient signatures arrive (meeting the keyring threshold), the request
is fulfilled 

A relayer broadcasts the signed transaction to the destination chain

 SignTransactionRequest

9

zrChain's oracle mechanism is
enshrined directly into consensus
through CometBFT Vote
Extensions. Each validator runs a
sidecar binary that monitors
external blockchains and feeds data
into the zrChain consensus process
to be voted on.

During each block:

ExtendVote: Validators query
their sidecar for the latest
external chain state (block
headers, account nonces,
events, prices) and include
cryptographic hashes in their
vote extension 

PrepareProposal: The block
proposer aggregates vote
extensions and validates that
hash commitments match the
actual data 

PreBlocker: Only data
achieving supermajority
consensus (>2/3 voting power)
is applied to chain state

10

Enshrined Oracle via Vote Extensions

This design ensures that external chain data is verified by the majority of
validators before being used. Critical fields like block headers require
supermajority consensus, while less critical data like gas prices can proceed
with simple majority.

Cross-Chain Observation

The sidecar oracle monitors multiple blockchains simultaneously:

Bitcoin & Zcash: Block headers for SPV-style verification (Simplified
Payment Verification, a lightweight method for confirming transactions via
Merkle proofs)

Solana: Account nonces for transaction sequencing, mint/burn events for
confirmation

Block headers are stored in dedicated collections and used to verify deposit
transaction inclusion via Merkle proofs. This allows zrChain to trustlessly confirm
external deposits without relying on centralized data providers.

Security Properties

zrChain inherits CometBFT’s Byzantine fault tolerance (hence the BFT in the
name): the network remains secure as long as fewer than 1/3 of validators are
malicious. Key security features include:

Distributed key custody: dMPC ensures no party ever holds a complete
private key

Consensus-verified external data: Block headers and events require
supermajority agreement

Deterministic execution: All validators process the same data and reach
identical state

Supply invariants: Strict accounting ensures wrapped token supply equals
custodied reserves

11

Workspaces

Workspaces are the core organizational primitive on zrChain. Every dMPC key
belongs to a workspace, not to an individual account. A workspace is a shared
governance container, analogous to a team vault, where owners request keys,
authorize signatures, and control access. This decouples key management from
any single blockchain account, enabling teams, institutions, and individuals to
manage cross-chain wallets under a shared governance structure.

Each workspace supports multiple owners and enforces a dual-policy model: an
admin policy governs structural changes (adding or removing owners, creating
child workspaces), while a separate sign policy gates all cryptographic
operations (key requests, signature requests). Owners configure policies through
zrChain's policy module, ranging from simple single-owner approval to complex
multi-signature thresholds. Workspaces can also form hierarchies, where child
workspaces inherit their parent's policies by default, enabling organizational
structures that mirror real-world team setups.

Workspaces give zrChain a programmable access control layer that
makes dMPC practical for real teams and institutions, not just individual
users. Any organization can create a workspace, define its own
governance rules, and manage cross-chain wallets without ever trusting a
single custodian.

12

A DCT is any token issued through Zenrock's decentralized custody network.

Secured by dMPC and anchored by zrChain, DCTs set a new standard for cross-
chain asset custody.

DCTs are more than wrappers. They're a security foundation.

DeFi primitives can be built on top: structured products, leveraged vaults,
restaking strategies. Developers take creative risks.

Users choose their exposure. The underlying custody stays the same.

The underlying custody stays the same.

Decentralized Custody Tokens: Technical Architecture

The DCT framework handles the complete lifecycle: deposit detection,
verification, minting, and redemption.

13

Decentralized Custody Tokens (DCTs)

Deposit & Verification Flow

Dedicated outpost services monitor external blockchains for deposits to dMPC-
controlled addresses. When a deposit achieves sufficient confirmations (typically
6 for Bitcoin), the outpost generates a Merkle proof demonstrating the
transaction's inclusion in the block and submits it to zrChain.

zrChain then performs multi-step verification: 

Block Header Validation: The referenced block header is fetched from
consensus-verified storage (see zrChain's enshrined oracle above) 

Merkle Proof Verification: The transaction's inclusion is cryptographically
verified against the stored block header 

Deduplication: A SHA256 hash of the transaction output prevents double-
processing

Upon successful verification, a is created.PendingMintTransaction

14

Decentralized Custody Tokens (DCTs)

Minting Flow

Once a deposit is verified, the minting process proceeds through multiple
phases:

Phase 1 - Consensus Verification: The PreBlocker confirms validators have
reached consensus on Solana nonce values and account states.

Phase 2 - Transaction Construction: The system prepares a Solana
transaction specifying the exact mint amount and recipient.

Phase 3 - MPC Signing: The transaction is submitted to the treasury module,
which collects threshold signatures from distributed key holders.

Phase 4 - Broadcast & Confirmation: The signed transaction is broadcast to
Solana. The sidecar oracle monitors for mint events and reports confirmation
back to zrChain.

Redemption Flow

When users burn wrapped tokens on Solana to redeem the underlying asset:

Burn Detection: The sidecar oracle monitors Solana for burn events

Maturity Period: Burns enter an escrow period before being processed

Transaction Construction: The relevant outpost constructs an unsigned
transaction

MPC Signing: The transaction is signed through the distributed MPC
infrastructure

Broadcast: The outpost broadcasts the signed transaction to the external
blockchain

15

Supply Accounting

The DCT system maintains strict supply invariants:

Custodied: Native assets held in custody addresses on external chains

Pending: Deposits verified but not yet minted on Solana

Minted: Wrapped tokens in circulation on Solana

The invariant is enforced at every state transition.
This ensures wrapped token supply is always fully backed by custodied reserves.

Mint: https://zenbtc.app.zenrocklabs.io/

CA: 9hX59xHHnaZXLU6quvm5uGY2iDiT3jczaReHy6A6TYKw

zenBTC is Zenrock's flagship DCT: decentralized yield-bearing wrapped
Bitcoin on Solana.  

The underlying BTC is never lent out, levered up, or used as risk capital. There are
no basis trades, no delta-neutral strategies, no opaque vaults, no dependencies
on other firms.

Your BTC is in decentralized custody, designed for security.

Custodied = Pending + Minted

16

zenBTC

https://zenbtc.app.zenrocklabs.io/

17

Most yield-bearing products rely on hidden strategies or unsustainable token
emissions. zenBTC does neither.

Yield is funded exclusively by real protocol fees: 5% of all zrChain fees flow
to zenBTC, plus 35% of zenBTC custody fees directly.

Yield breakdown:

Because zenBTC is permissionless to mint and redeem, yield is set by the market,
not by marketing.

The yield rate is a function of two variables:

Total zenBTC supply 

Total Zenrock protocol fees

https://app.zenrocklabs.io/zenbtc/yield

https://app.zenrocklabs.io/zenbtc/yield

As Zenrock earns more fees, yield rises. As yield rises, more users may choose
to mint zenBTC to capture it, increasing supply and pushing yield back down.
The cycle works in both directions: if yield falls too low, users redeem, supply
decreases, and yield rises again.

The result is a self-balancing mechanism that naturally discovers the
market-clearing yield for low-risk BTC on Solana.

No governance votes, no manual rate setting, no emissions schedules. Just
supply and demand. And unlike most yield-bearing BTCs that pay in points or
governance tokens, zenBTC yield is paid directly in sats on the Bitcoin
blockchain, distributed daily.

18

zenZEC

Mint:

CA: JDt9rRGaieF6aN1cJkXFeUmsy7ZE4yY3CZb8tVMXVroS

zenZEC is the second DCT: decentralized wrapped Zcash on Solana.

Zcash pioneered zero-knowledge proofs in cryptocurrency, enabling shielded
transactions where the sender, receiver, and amount are encrypted.

By bringing ZEC to Solana via the DCT standard, zenZEC inherits both Zcash's
privacy heritage and Zenrock's decentralized custody guarantees.

 https://app.zenrocklabs.io/zenzec/crucible

https://app.zenrocklabs.io/zenzec/crucible

19

Hush Protocol

Use Hush:

Hush is the privacy layer for Solana.

Solana is fast, cheap, and increasingly the default venue for DeFi. But it's a public
ledger.   

Every transaction, every balance, every decision is visible to anyone. For many
users and use cases, that's a problem. And as Solana is used for more things
(rent payment, salary, car payment, stock trading, and more), the need for privacy
will only grow.

Hush enables anonymity via a shielded asset pool. Users deposit ("shield")
jitoSOL into a pool where their assets become indistinguishable from everyone
else's. They can then:

Transfer privately to other Hush users without ever leaving the shielded pool

Unshield to any address—with no onchain link to the original deposit

https://hushprotocol.xyz  

https://hushprotocol.xyz

20

This creates an entirely private economy within the pool. Users can receive funds,
send payments, and transact multiple times—all without touching public Solana
until they choose to.

Hush is designed to incorporate core compliance features:

OFAC wallet screening: All shielding transactions are screened via a
CipherOwl integration 

AML/ Theft screening: All shielding transactions are screened via a
CipherOwl integration 

Terrorist financing / CSAM screening: All shielding transactions are
screened via a CipherOwl integration 

Regional geo-blocking: Sanctioned regions are prohibited from interacting
with Hush 

Viewing keys for audibility: Users retain a record of their shielded activity
that they can release to auditors at their own discretion

21

The Vision

Hush is a shielded compute layer: a fully Turing-complete VM built on Solana.
Any application that can be built on Solana can be built privately via Hush.

The pool is denominated in jitoSOL rather than native SOL so users do not have
to sacrifice staking yield while remaining private. No opportunity cost means no
reason to leave. This design allows the pool to grow continuously without
tradeoffs, and as the pool grows, privacy guarantees strengthen for everyone.

At launch, shielding, unshielding, and transferring are enabled. Users can also
perform partial transfers and partial withdrawals, which increases the privacy
guarantees for the entire pool by allowing large deposits to strengthen anonymity
for smaller ones.

Over time, Zenrock Labs and third parties will build on Hush, bringing DeFi,
payments, and other applications into the shielded layer. The goal is privacy and
usability without tradeoffs: everything you have on Solana, but private.

22

Hush Protocol: Technical Architecture

Zero-Knowledge Foundation

Hush uses Miden zk-STARKs as its proof system, chosen for two critical
properties:

No Trusted Setup: Unlike Groth16 or PLONK, Miden zk-STARKs require no
ceremony or trusted parameters 

Post-Quantum Resistance: Hash-based proofs are not vulnerable to
known quantum attacks like Shor's algorithm

The cryptographic stack includes:

RPO Hash: Rescue Prime Optimized, a ZK-friendly hash function native to
Miden 

X25519 ECDH: For deriving shared secrets in shielded transfers 

ChaCha20-Poly1305: For encrypting transfer amounts

AlgorithmPrimitive Purpose

Hash RPO (Rescue Prime Optimized) ZK-friendly hash native to Miden

Key Exchange X25519 ECDH Stealth addresses for shielded transfers

Encryption ChaCha20-Poly1305 Amount encryption and wallet recovery

23

Commitment Structure

When a user shields tokens, they create a cryptographic commitment that is
added to a sparse Merkle tree (depth 24, ~16.7 million capacity) stored on
zrChain. The user retains their privately, which is required to later
prove ownership and spend the shielded funds.

 Shield Flow

Client: User generates a from their connected Solana wallet
and derives a commitment from their deposit amount 

Solana: User calls the shield instruction, transferring tokens to a vault and
emitting a

Compliance Check: The sidecar oracle performs an OFAC screening via
CipherOwl 

Commitment Insertion: Clean shield events are reported to zrChain via vote
extensions and inserted into the Merkle tree 

Voucher Creation: A is created with encrypted amount
data

spending_key

spending_key

ShieldEvent 

ShieldedVoucher

24

 Unshield Flow

Client: User generates a zk-STARK proof demonstrating knowledge of a valid
commitment in the tree and correct nullifier derivation 

Proof Submission: User submits the nullifier, Merkle root, zk-STARK proof,
and recipient address 

Verification: zrChain validates the nullifier hasn't been spent, the Merkle
root is valid, and the zk-STARK proof verifies 

Solana Transfer: The PreBlocker constructs a transfer from the vault to the
recipient, signed via MPC 

Completion: Once Solana confirms the transfer, the unshield is marked
complete

The critical privacy property: the nullifier cannot be linked to the original
commitment without knowing the . External observers see only that
some commitment was spent, not which one.

spending_key

25

Shielded Transfers

Users can transfer value within the privacy pool in a fully encrypted manner
without ever exposing private info on Solana—a key feature that enables private
payments between Hush users’ shielded addresses: 

Sender generates a zk-STARK proof showing they're spending a valid
commitment and creating new commitments for recipient and change

Transfer amounts are encrypted using ECDH with the recipient's public
viewing key

zrChain verifies the proof and adds new commitments to the Merkle tree

Recipient scans for incoming transfers using their ,
decrypting amounts they receive

All amounts remain private—only the commitments and fee are visible onchain.
This enables an entirely private economy within the shielded pool: users can
receive funds, transact multiple times, and only unshield when they need to
interact with public Solana.

Nullifier System 

Nullifiers prevent double-spending while preserving privacy. Each commitment
can only produce one valid nullifier, derived from the spending key. When spent,
the nullifier is permanently recorded.

 Attempting to spend the same commitment again produces the same nullifier,
which is rejected as already spent.

Crucially, knowing a nullifier reveals nothing about which commitment it
corresponds to without the spending key. In addition, each transaction is padded
with decoy nullifiers so that nobody is able to tell how many inputs each
transaction has.

This provides an even greater level of privacy than Zcash, where input/
output counts per transaction are public and could be used to assist in
probabilistically deanonymising users.  

Key Hierarchy  

Hush implements tiered keys for different permission levels:

incoming_viewing_key

26

Spending Key: Full control, kept private by the user

Full Viewing Key: Share with auditors to reveal complete transaction history
without spending ability

Incoming Viewing Key: Share to receive shielded transfers

Fee Model

For jitoSOL unshields, users can optionally request 0.01 SOL funding (+10 bps) to
enable withdrawals to fresh wallets with zero SOL balance. Fees are collected into a
protocol fee pool and distributed according to Zenrock's tokenomic architecture,
flowing value to $ROCK holders via the Node Reward Pool architecture described
below.

Privacy Guarantees

What's Hidden:

Link between deposit and withdrawal addresses

Transfer amounts, sender and recipient addresses (encrypted with recipient's key)

Which commitment is being spent (only nullifiers revealed)

Amount of transaction inputs (decoy nullifiers are commingled with real ones)

What's Visible:

Deposit/withdrawal amounts and addresses (visible on Solana)

Total pool size (aggregate of all shielded funds)

Nullifiers (but not their corresponding commitments)

With zrChain, DCTs, and Hush all generating fees, these revenue streams flow to a
single token: $ROCK.

Key Spend View Spent Decrypt Incoming

spending_key Yes Yes Yes

full_viewing_key No Yes Yes

incoming_viewing_key No No Yes

27

Solana CA: 5VsPJ2EG7jjo3k2LPzQVriENKKQkNUTzujEzuaj4Aisf

zenBTC, Hush, and every future product built on zrChain share one thing:
$ROCK is the main value capture mechanism.

This is achieved via our Node Reward Pool architecture (detailed in the Staking
$ROCK section).

$ROCK is the native token of zrChain, serving as gas, governance, and economic
foundation.

It exists natively on both Cosmos (ICS-20 implementation) and Solana (via zenTP
native $ROCK bridge).

$ROCK has a fixed supply of 1 billion tokens. With no inflation, ever.

All rewards and incentives come from existing supply, including pre-allocated
pools established at genesis.

There is no mechanism to mint new tokens.

28

Unlike most tokens, $ROCK had economic utility immediately at TGE. All
fees across the Zenrock ecosystem are paid in $ROCK (though often abstracted
from the user).

Every revenue line generated by Zenrock Labs, onchain and offchain, as
well as all onchain revenue from all other builders flows through the
token.

This creates a direct, protocol-driven bid on $ROCK. As fees increase,
protocol-driven demand for the token increases.

Those tokens are then distributed across the ecosystem according to Zenrock's
tokenomic architecture (detailed in the Tokenomic Design section) and critically,
are returned to the circulating market slowly over time due to the design of the
Node Reward Pool.

As Zenrock Labs and others ship more products and more builders deploy on
zrChain, protocol revenue grows. More products, more fees, more protocol-
driven demand for $ROCK.

29

All Zenrock products generate fees that flow through $ROCK. Here's how
fees are structured across the ecosystem:

DCTs (zenBTC, zenZEC, and future DCTs):        

Hush:

All fees are converted to $ROCK and distributed according to Zenrock's
tokenomic architecture (detailed in the next section). As more products launch
and usage grows, protocol revenue scales accordingly.

Protocol Revenue

Action Fee

Shield Free

Transfer 0.01 JitoSOL

Unshield 50bps

Action Fee

Mint $5 flat

Redeem 50bps

30

Every fee from every product built on Zenrock's infrastructure, whether
developed by Zenrock Labs or an external team, is handled according to
the same tokenomic framework. Fees earned are distributed as follows:

35% to Zenrock Labs: operations, development and $ROCK accumulation 

30% to Node Reward Pool (NRP): validators and stakers (distributed over
36 months per the below schedule) 

30% to Application Builder: developer of the product

This can be taken by the builder or otherwise directed at their discretion

In instances where Zenrock Labs develops the product generating the fee,
it is also counted as the application builder

On zenBTC (though developed by Zenrock Labs) the application builder
share is converted to yield on zenBTC 

5% to zenBTC: direct allocation to yield on zenBTC

The key insight: it doesn't matter what gets built on zrChain. Custody products,
privacy products, identity products, things we haven't thought of yet. They all feed
the same tokenomics.

More products = more fees = more demand for $ROCK.

Zenrock's Tokenomic Design

31

Crypto loves the slogan "all value accrues to the token." In practice, that is
usually fiction.

Real protocols need a real operating company to build product, ship integrations,
support partners, run audits, handle compliance, grow awareness through BD
and events, help third-party builders deploy, and maintain core infrastructure.
That's Zenrock Labs. And all of this costs money.

Zenrock Labs is the most important developer contributing to the
Zenrock ecosystem and thus has a key place in zrChain tokenomics with a
fixed 35% share of protocol fees.

This fee share in turn will allow Zenrock Labs to direct all offchain revenue
it earns to the tokenomics top of funnel, maximizing alignment while
strengthening the transparency between Zenrock Labs and the protocol. 

Projects that underfund their Labs Co end up with stalled development, missed
partnerships, and slow ecosystem growth. The token holder suffers.

A well-resourced Labs Co means more products, faster growth, stronger
partnerships, and a more valuable network.

The Role of Zenrock Labs

32

But here is the problem: very often Labs Co has no direct way to
participate in the protocol's success: they are completely cut out of the
tokenomic model.

So invariably they find other ways to make money. Offchain deals, backdoor
arrangements, quiet revenue streams that never touch the token. Labs Co says
"all value accrues to the token" while quietly building a separate business
on the side. This activity is pervasive.

Zenrock Labs does not operate that way. We see transparency as a structural
advantage. $ROCK tokenholders are not stakeholders in Zenrock Labs and we
don’t suggest they are, but we understand that it is crucial for the protocol to
align disparate economic incentives by design.

So instead of backroom deals that benefit a Labs Co while the token
flatlines, we built alignment into the protocol itself with a simple
transparent revenue share that aligns and benefits all parties.

To that end, Zenrock Labs receives an enshrined 35% of all protocol fees.
This isn't a hidden offchain drain on the protocol. It's a transparent investment
in everything that makes the protocol worth owning.

33

Offchain Revenues

When projects pretend their Labs doesn't need durable economics, one of three
things happens:

Opaque cash sweeps: quiet arrangements where money flows back to Labs
through hidden mechanisms

Offchain deals that siphon value: the classic "vampire economics"
problem where usage and fees grow but the token does not benefit

Constant token selling: creating perpetual sell pressure of the magnitude
that has destroyed countless promising projects

This is why you see protocols with explosive usage paired with tokens that go
nowhere. The onchain story says one thing. The offchain arrangements
say another.

Zenrock is structured differently. Zenrock Labs is compensated 35% of Zenrock
protocol fees, and in exchange, Zenrock Labs agrees to route all economic
activity through the protocol.

If Zenrock Labs signs an offchain agreement, all resulting revenue will be
treated as protocol revenue and distributed through the same publicly
visible tokenomic fee structure. Zenrock Labs will have no second
business quietly capturing value outside the protocol. This way, even
offchain deals are structurally designed to benefit $ROCK holders.

34

As a $ROCK holder, you do not have to guess whether some unseen side deal is
draining your upside. You want Labs to pursue as many profitable offchain
deals as possible, because all of that revenue flows through the protocol
as if it originated onchain.

To be clear: this isn't charity. Zenrock Labs is a for-profit business and $ROCK
holders are not stakeholders in that business. But we understand a few things
that many projects seem to have forgotten:

A thriving ecosystem benefits Labs far more than hoarding economics
ever could.

A strong token is the most powerful tool in crypto: It attracts builders,
users, partners, liquidity, attention. It creates a flywheel of decentralized
support that no amount of centralized management or offchain deal-
making can replicate.

When the token succeeds alongside the project, that's where true network
effects are built. That's the system we designed.

35

Staking yield on $ROCK centers around the Node Reward Pool (NRP): a
dedicated onchain module pre-funded with 8% of total supply at genesis. The
NRP receives 30% of all fees earned on zrChain. All staking rewards flow from the
NRP to validators and their delegators.

Staked $ROCK earns rewards from two sources:

Baseline Rewards

Protocol Rewards

The rewards a staker receives at any given point is the sum of the two.

Baseline Rewards are fixed block emissions paid to stakers, funded by the
NRP's genesis allocation. The per-block reward follows this schedule:

Total baseline emissions over the 5-year schedule: ~22.2M ROCK.

Staking $ROCK

Effective Date Block Reward Annual Emission

2026-01-01 2.25 ROCK ~12.2M ROCK

2027-01-01 1.0 ROCK ~5.4M ROCK

2028-01-01 0.5 ROCK ~2.7M ROCK

2029-01-01 0.25 ROCK ~1.35M ROCK

2030-01-01 0.1 ROCK ~0.54M ROCK

2031-01-01 0 ROCK 0

36

Protocol Rewards are based on fees earned by the protocol (including offchain
revenue routed through the tokenomics). The 30% share of all fees flows to the
NRP and is distributed over time according to the following schedule:

1/3 paid linearly over 30 days following the fee event

1/3 paid linearly over 5 months after that

1/3 paid linearly over 30 months after that

Implementation note: To avoid unbounded state growth, fees are aggregated
into monthly epochs (30-day periods). Each epoch accumulates all fees received
during that period, then distributes them according to the schedule above.

Distribution happens per-block for smooth rewards, but aggregation is monthly.
This bounds onchain state to approximately 36 active epoch buckets regardless
of transaction volume.

Example: Assume during month 1, 100 $ROCK is earned as fees. 30 $ROCK
flows to the NRP per the tokenomics. When the epoch closes after 30 days:

Over the next 30 days (month 2), 10 $ROCK is released at a constant rate
(~0.33 ROCK/day)

Over the following 5 months (months 3-7), 10 $ROCK is released (~0.067
ROCK/day)

Over the following 30 months (months 8-37), the final 10 $ROCK is released
(~0.011 ROCK/day) 

Total distribution period: 36 months from epoch close. This schedule smooths
rewards and creates predictable returns, but more importantly, it creates a
structural token sink.

Because rewards are distributed over 36 months rather than
immediately, there is always a growing backlog of $ROCK committed to
future payouts.

As protocol activity increases, the pipeline of pending distributions
grows. Tokens that would otherwise be liquid are locked in the
distribution queue, temporarily removed from circulating supply.

The more successful the protocol becomes, the larger this sink grows. It's not a
temporary lockup or an artificial staking mechanism. It's a perpetual feature of
how the protocol works, bringing stability and transparency to changes in
circulating supply.

37

Fixed supply of 1 billion $ROCK:

• Team: 20.24%

• Investors: 21.50%

• Airdrop: 13.20%

• Protocol Rewards: 15.00%

• Ecosystem: 17.00%

• Liquidity: 7.00%

• Treasury: 6.06%

Insiders (team + investors) are subject to a 12-month cliff followed by 24-month
linear vesting. All vesting schedules began 11/11/24.

Token Allocation

38

Anyone can build on Zenrock and earn a share of what they generate, subject to
Zenrock tokenomics.

Integration Paths

 Create a New DCT

For teams with existing assets seeking decentralized custody on Solana. Bring any
token to Solana with institutional-grade security through dMPC custody. Requires asset
specification, outpost infrastructure coordination, and protocol governance approval.

 Build on Existing DCTs

For DeFi protocols, yield strategies, and structured products. Use zenBTC, zenZEC, or
future DCTs as primitives for lending, structured products, vaults, and other DeFi
applications.

 Build on Hush Protocol

For privacy-focused applications and private payments. Leverage the shielded compute
layer to build confidential DeFi: private lending, private trading, anonymous payments.

 Build Something New

The dMPC infrastructure is general-purpose. Identity systems, key management, cross-
chain messaging: the infrastructure is live and extensible.

 Revenue Share

Builders have the ability to receive, or direct the distribution of 30% of all fees
their products generate, distributed in $ROCK according to protocol
tokenomics. In instances where multiple teams contribute to a product,
revenue can be configured at the protocol level.

 Builder Support 

Zenrock Foundation and Zenrock Labs support builders with marketing,
compliance support, go-to-market strategy, and technical integration. We want
you to succeed because when you succeed, the whole ecosystem benefits.

Reach out to begin building.

Build on zrChain

39

Use zenTP:

Zenrock Transfer Protocol (zenTP) enables native $ROCK transfers between
zrChain (Cosmos) and Solana. Unlike traditional bridges that wrap tokens, zenTP
represents $ROCK as a native SPL token on Solana, providing the same user
experience as any native Solana asset.

200M $ROCK were transferred to Solana to seed liquidity as fully bridged,
circulating tokens represented as a native SPL token. As users move tokens
across the bridge, supply fluctuates on each side, but total supply remains
unchanged.

zenTP is the first transfer protocol connecting Cosmos directly to Solana with
native token representation (rather than wrapped tokens), leveraging zrChain's
dMPC infrastructure for security.

https://app.zenrocklabs.io/zentp

zenTP

https://app.zenrocklabs.io/zentp

zrChain is live. zenBTC is minting. Hush is shielding.

Custody and privacy are just the beginning. As Zenrock Labs and other teams
ship more products, all of it feeds the same tokenomics.

Near-term focus areas include:

Expanded DCT ecosystem: Additional assets beyond BTC and ZEC

Hush applications: DeFi primitives built on the shielded compute layer

Developer tooling: Infrastructure to accelerate third-party building

Protocol upgrades: Continued expansion of dMPC operator set and
security guarantees

Expect continued shipping.

More products. More fees. More value to $ROCK.

Get started: https://www.zenrocklabs.io/

What's Next

[1] This Litepaper reflects the plans and expectations of its authors as of the date listed on the first page. Plans and circumstances
can change, so we cannot assure that it will be accurate as to future events, developments, or plans, and it should not be relied on
with respect to any such events, developments, or plans.

02/03/2026

https://www.zenrocklabs.io/

