informal

Security Audit Report

Zenrock Q1 2026 - Hush privacy

Last Revised:
03.02.2026

protocol

Authors:
Carlos Rodriguez,
Karolos Antoniadis,
Ranadeep Biswas,
Simon Noetzlin,
Luca Joss,
Aleksandar Stojanovic,

Vukasin Dokmanovic¢

informal
SYSTEMS
Zenrock Q1 2026 Security AuditReport
Contents
Audit Overview 1
TR PrO et 1
SCOPE Of IS TEP O oo 1
AU DIaN 1
CONCIUSIONS e 1
System Overview 3
HUSh privacy protoCol 3
oM ON NS et 4
Audit Dashboard 7
Targ et QUMM ANy 7
ENngagement SUMMaAry 7
SV EIIY SUMMIAIY .. e e e 7
Threat Model 8
Findings 31
Unshield recipient address not cryptographically bound to ZK proof 34
Note secret and randomness not cryptographically bound to spendingkey 35
Cross-asset theft vulnerability 37
CIrCUMVENTING fEES .. e 39
Reusing balance nullifier 40
Hardcoded note SeqUENCE lIMIT 41
Integer overflow in balance accumulation 42
Unsanitized ub4 as field element 44
Missing shared secret validation ... 45
Stealth recovery mismatCh a7
Missing message validation in xfhush handlers i i 48
Cross-chain INKability 49
Mempool proofreplay attaCk 50
Missing tree depth validation makes the contractunusable, 52
Lack of confirmation during admin updates 54
Nullifier key derivation mismatch in accountrecovery ..., 55
Erroneous supply Stats 57

Informal Systems © 2026

SYSTE
Zenrock Q1 2026 Security AuditReport
Unbounded Merkle Depth (DOS VECTOr) ... 58
Unbounded JSON string (DOS VECTIOr)ot e 59
Missing host-side new balance validation (DoS vector) iiiinn. 60
Silentrecipient string truncation 62
AddCOMMITMENT OVErWIITES . . . e e e e 63
Missing check for leaf_indeX 64
Commitment field ordering iNCONSIStENCYo e 65
Duplicate vouchers compute wrongbalance i 66
Missing integer overflow check in xjhushmodule i i i, 67
Note secret derivation inconsistency between balance notes and vouchers 69
Duplicate incoming notes notvalidated 70
Viewing key lifetime leak 71
Miscellaneous findings on hush-wasm 72
Miscellaneous findings in hush.masm e 74
Miscellaneous comments on XUSh 75
Miscellaneous findings on CW contracts o 76
Appendix: Vulnerability Classification 77
Disclaimer 81

Informal Systems © 2026 ii

infor

SYS

zQ)
)

=
m

Zenrock Q1 2026 Security AuditReport

Audit Overview

The Project

In January 2026, Zenrock engaged Informal Systems to perform a security audit of the Hush Privacy protocol.

Scope of this report

The audit evaluated the correctness and security properties of the hush-wasm library, the x/hush module,
Miden ZK circuits, the miden-merkle contract, and the miden-verifier contract within the Hush Privacy
protocol.

Audit plan

The audit was conducted between January 14th, 2026 and January 23rd, 2026, by the following personnel:

-+ Carlos Rodriguez

- Karolos Antoniadis

- Ranadeep Biswas

- Simon Noetzlin

+ Luca Joss

- Aleksandar Stojanovi¢
- Vukasin Dokmanovi¢

Conclusions

The Zenrock development team has built an ambitious and technically sophisticated privacy protocol that
leverages Miden STARKSs to provide shielded transactions for wrapped assets on Solana. The codebase
demonstrates strong engineering practices with comprehensive documentation, thoughtful architecture
decisions and proactive security considerations. The team’s responsiveness to identified issues and
willingness to address design concerns speaks highly of their commitment to security. However, our audit
uncovered several critical vulnerabilities that required immediate attention before mainnet deployment.

We identified a design flaw where the circuit fails to cryptographically bind note secret to spending key,
allowing anyone who knows a commitment's pre-image to generate unlimited valid proofs using different
spending keys—each producing a unique nullifier that bypasses double-spend protection. Additionally,
the protocal suffers from other critical issues. Some of them are: asset type is notincluded in the proofs
cryptographic binding (enabling cross-asset theft where attackers can withdraw one asset using a proof
for another), values throughout the system are not validated to be less than the Goldilocks field modulus
before field arithmetic operations (enabling wraparound attacks), and neither asset type nor sender address
are bound to proofs (enabling mempool replay attacks where valid transactions can be intercepted and
replayed with modified fields). These vulnerabilities stem from missing cryptographic bindings between
proof components and inadequate input validation at system boundaries.

Informal Systems © 2026 1

informa

SYSTEMS

Zenrock Q1 2026 Security AuditReport

Additionally, other findings around input validation, duplicate detection, commitment ordering inconsisten-
cies, and mempool replay attacks highlight gaps in defense-in-depth. A critical overarching issue is that
circuitinputs on both the operand stack and advice tape are frequently not sanitized before being treated
as field elements—all numeric values (amounts, fees, assets, sequences, leaf indices) should be explicitly
reduced modulo p and validated againstreasonable protocol-specific bounds (e.g., maximum amount per
note of 2762 to prevent accumulation overflow). Beyond these specific vulnerabilities, we recommend to
deploy zrchain to a dedicated security testnet with adversarial testing scenarios (cross-asset proofs, nullifier
replays, field overflow edge cases, mempool front-running) to validate that on-chain validation and ZK
circuit constraints properly mitigate these attacks. This complements static code review by verifying runtime
behavior under real attack conditions and ensures the circuit-client-chain integration behaves correctly
under Byzantine inputs.

Once theinitial auditended, the development team addressed all findings shortly after and we reviewed the
fixes and updated the status of the findings.

Informal Systems © 2026 2

infor

SYS

zQ)
»—

=
m

Zenrock Q1 2026 Security AuditReport

System Overview

Hush privacy protocol

The Hush privacy protocol provides privacy for wrapped assets (zenBTC, jitoSOL) through a two-chain
architecture combining Solana’s settlementlayer with zrchain’s privacy layer. Users shield tokens on Solana
by transferring them to a vault, receiving cryptographic commitments on zrchain that obscure amounts and
ownership. They can then perform untraceable shielded transfers to other users or unshield to a new Solana
address with no on-chain link to the original shield transaction. The protocol operates across three layers:

- Solana (token custody via vaults),

- zrchain (shielded state management via x/hushmodule, miden-merkle contract for Merkle tree operations,
and miden-verifier contract for STARK proof verification),

- and browser (hush-wasmlibrary for client-side proof generation).

Validator sidecars coordinate between chains by monitoring Solana events and submitting transactions to
both the module and MPC keyrings for signature generation. The privacy guarantees are enforced through
ZK circuits written in Miden assembly (hush.masm) that define the proving logic for unshield and shielded
transfer operations.

The protocol achieves transaction unlinkability through zero-knowledge proofs that allow users to prove they
own shielded tokens without revealing which specific tokens they're spending. Each shielded balance is
represented by a cryptographic commitment thathides both the amountand the owner, and when spending,
users reveal a nullifier that prevents double-spending but cannot be linked back to the original commitment.
The system supports different levels of access through tiered viewing keys: spending keys provide full
control, full viewing keys allow auditing of all transactions, and incoming viewing keys only permit viewing
received amounts. All commitments are stored in a Merkle tree that maintains historical snapshots, allowing
users to generate proofs against any past state of the system.

Informal Systems © 2026 3

infor

SYS

Zenrock Q1 2026 Security AuditReport

zQ)
»—

=
m

System architecture

zrchain Layer Browser Layer

Validator Sidecars ‘

hush-wasm
(STARK proof generation)

MPC Layer Solang Layer
/t
X _rea_sury x/hush Module ‘ CipherOwl Program
(Signing)
miden-merkle miden-verifier Shielded Vaults
(Merkle tree) (Proof verification) (MPC-controlled)

hush-wasm library

The hush-wasm library serves as the client-side cryptographic engine for the privacy protocol, providing
browser-based implementations of all cryptographic operations required for shielded transactions. It acts
as the bridge between user wallets and the on-chain privacy system, compiling Rust cryptographic code to
Web Assembly for execution in web browsers.

The library computes commitments from secret values that represent shielded notes in the Merkle tree
implemented in miden-merkle CW contract and derives nullifiers that mark notes as spent. For shielded
transfers, it handles ephemeral key generation and performs key exchange to establish shared secrets,
then encrypts transfer amounts so only the intended recipient can decrypt them. The library also derives
the hierarchical key structure from the wallet signature, producing nullifier keys for spending operations and
viewing keys that enable audit or receive-only capabilities without exposure to spending authority.

When configured with the prover feature, the library generates full STARK proofs directly in the browser. It
assembles the complete execution program from the Miden assembly circuit, constructs the advice stack
with all private inputs, including note secrets and Merkle authentication paths, builds the public stack inputs
with the outputs commitmenthash and Merkle root, and executes the Miden VM to generate a proof that can
be verified on-chain.

The library also implements deterministic wallet recovery that allows users to reconstruct their entire trans-
action history from a wallet signature. By signing standardized messages with sequential indices, users
derive the same note secrets they originally generated for each voucher, then query the blockchain for
vouchers with matching commitments to identify their own. Voucher amounts are encrypted on-chain using
keys derived from the spending key (for own balance notes) or ECDH shared secrets (for incoming trans-
fers), allowing the library to decrypt and recover complete voucher data even if browser storage is cleared.

Informal Systems © 2026 4

infor

SYS

Zenrock Q1 2026 Security AuditReport

zQ)
»—

=
m

x/hush module

The x/hush Cosmos SDK module serves as the privacy layer within the zrchain blockchain, orchestrating
confidential transactions using zero-knowledge proofs. It coordinates between user operations, blockchain
state, and cross-chain token movements, allowing users to deposit tokens from Solanainto a shared privacy
pool, transfer funds within the pool with hidden amounts, and withdraw to any address without observers
being able to link deposits to withdrawals. By design, the module operates on a model where each shielded
voucher can be spent exactly once, with nullifiers serving as spent markers to prevent double-spending
while maintaining unlinkability between commitments and their spent state.

The module handles three core operations:

-+ Shield deposits occur when validators detectincoming transfers on Solana, screen the sender for compli-
ance, and if approved, add the commitment to the privacy pool and issue a new voucher to the depaositor.

- Unshielding allows users to withdraw tokens by submitting a cryptographic proof of ownership.

- Shielded transfers move value between users within the privacy pool by accepting ownership proofs,
creating new encrypted vouchers for recipients and change, and collecting fees.

The module maintains several key data structures to enable privacy operations. It tracks which vouchers
have been spent through permanent nullifier records, manages the lifecycle of withdrawal requests from
submission through signing and broadcasting to completion with automatic retry logic for failed attempts,
and coordinates with the miden-merkle contract to maintain a rolling window of valid historical roots that
users can prove against. For each operation, the module independently reconstructs a cryptographic
summary of all public transaction data and combines it with the user’s proof inputs to ensure verification
matches what the proof actually commits to, preventing any tampering with transaction details after proof
generation.

Miden ZK circuits

The hush.masm circuit functions as the cryptographic core of the privacy protocol, implementing a zero-
knowledge STARK program thatproves the validity ofunshielded and shielded transfers. The circuitreceives
private inputs through Miden’s advice stack mechanism, including the user’s spending key, existing balance
note data (secret values, randomness, amount), and up to 24 incoming notes with their authentication paths.
It derives the nullifier key from the spending key, recomputes commitments for all input notes to verify
they match the claimed values, generates nullifiers to mark these notes as spent, and verifies each note’s
membership in the Merkle tree by checking authentication paths against the public root. The circuit then
accumulates all input amounts from both the existing balance and incoming notes, ensuring accounting
across note claims.

miden-merkle contract

The miden-merkle CosmWasm contract maintains a depth-configurable sparse Merkle tree to store com-
mitments. When a commitment is added through the SudoMsg: : AddCommitment interface (only callable by
the chain), the contract computes its position in the tree based on a sequential leaf index, updates all
parent hashes along the Merkle path using the RPO256 hash function, and stores the new root. To support
proof verification against historical states, the contract maintains a rolling window of recent roots via the
ROOT HISTORY map, with a configurable HISTORY SIZE that defaults to 1000 blocks.

Informal Systems © 2026 5

infor

SYS

zQ
» —_—

=
m

Zenrock Q1 2026 Security AuditReport

miden-verifier contract

The miden-verifier CosmWasm contract serves as the zero-knowledge proof verification endpoint. It
acts as a thin wrapper around the Miden VM’s native STARK verifier, translating data structures into the
formats required by Miden’s proof system. By design, the verifier is exclusively callable through the SudoMsg
interface, ensuring that only the x/hush module keeper can submit proofs for verification.

The contract's primary responsibility is to verify Miden STARK proofs against a specified program hash
and public inputs. When the x/hush Keeper submits an unshielded or shielded transfer transaction, it calls
SudoMsg: :Verify with four components: the program hash (identifying which circuit was executed), the
stack inputs (public values available to the verifier), the stack outputs (expected final stack state), and the
baseb4-encoded proof bytes. The contract deserializes the program hash into a RpoDigest, constructs a
ProgramInfo with the default Miden kernel, converts stack inputs and outputs into the appropriate Felt
representations, and invokes Miden VM'’s verify () function.

Informal Systems © 2026 6

infor

SYS

zQ)
)

=
m

Zenrock Q1 2026

Security Audit Report

Audit Dashboard

Target Summary

- Type: Protocol and implementation
- Platform: Cosmos SDK, Go, Rust, CosmWasm, MASM
- Artifacts: At commithash 6f555b9:

» hush-wasmlibrary

» x/hush module

» Miden ZK circuits

» miden-merkle and miden-verifier contracts

Engagement Summary

- Dates: January 14th, 2026 — January 23rd, 2026
- Method: Threat modeling, manual code review, testing

Severity Summary

Finding Severity

Critical
High
Medium
Low

Informational

Total

Number

11

33

Table 1: Identified Security Findings

Informal Systems © 2026

https://github.com/zenrocklabs/zenrock/commit/6f555b992a752918e6ece20fa3d323de7a6b4298

infor

SYS

zQ)
»—

=
m

Zenrock Q1 2026 Security AuditReport

Threat Model

Assumptions:

- For zrchain:

o ok 0N~

The blockchain state is persistent and not subject to corruption or data loss.

Consensus mechanism properly replicates state across validators.

No chain reorganizations after finality.

zrchain sidecars parse shield events that originate from actual Solana on-chain events.
Shield events require 22/3 validator consensus and are not compromised.

Shielded token assets have maximum supplies below uint64 maximum value (71.84x10").

Property HUSH-01: Each voucher (commitment) can only be spent
(transferred or withdrawn) exactly once

+ Threata: Same commitmentproduces multiple distinct valid nullifiers, allowing the commitmentto be spent
more than once (e.g., non-deterministic nullifier computation, circuits allowing arbitrary nullifiers, etc)

The threat holds.

hush.masm: The same commitment can produce multiple distinct valid nullifiers because the
spending key is an unconstrained private input, allowing any prover to generate valid proofs for the
same commitment with different spending keys, resulting in different nullifiers. The circuit does to verify
thatthe spending keyused to compute the nullifieris the same spending key that was used to create the
commitment’'s note secret. Since nullifier A # nullifier B, both can be marked as spent sepa-
rately, allowing the same commitment to be double-spent. See finding “Note secret and randomness
not cryptographically bound to spending key’.

- Threat b: Nullifier spent status not persisted correctly or can be reset, allowing previously spent nullifiers
to be reused

The threat does not hold.

>

x/hush: Nullifier spent status is stored in the NullifiersStore. When a nullifier is marked as spent
via MarkNullifierSpent, it is written to state forever (there is no method to remove a nullifier from
NullifierStore). Before processing any nullifier, we call IsNullifierSpent check in Unshield for the
balance nullifier and the incoming nullifiers and hence verify that each nullifier has not been spent. We
have the same checks in ShieldedTransfer for balance and incoming nullifiers. Then, in Unshield and
in ShieldedTransfer the nullifiers are marked here and here, respectively. Because a fransaction is
executed atomically, all the unused nullifiers are marked and they cannot be used ever again; note that
Unshield or ShieldedTransfer cannotreturn successfully at any point before the nullifiers are marked.

-+ Threat c: Nullifier spent status not checked before processing, allowing the same proof to be submitted
and accepted multiple times

The threat holds.

Informal Systems © 2026 8

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L46
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L480-L483
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L467-L477
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L138
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L152
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L596
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L605
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L245-L260
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L662-L677

informa

SYSTEMS

Zenrock Q1 2026 Security AuditReport

» x/hush: Unshield and ShieldedTransfer check if there are duplicates in the incoming nullifiers.
However, there is no check to prevent the balance nullifier (i.e., msg.Nullifier) from being used as
an incoming nullifier. As a result, a user could submit the balance nullifier as an incoming nullifier and
double spend the amount of tokens he has.

Property HUSH-02: If a user deposits amount Q of asset type A, then
a spendable commitment is created that cryptographically binds the
correct amount Q and asset type A, and only the depositor (holding
the corresponding spending key) can spend it

- Threat a: User deposits tokens of asset type A, butreceives commitment for asset type B

The threat does not hold under the assumptions 4 and 5. The processShieldEvents ABCI handler
processes shield events from oracle data, which originates from Solana on-chain events. The
shieldEvent.Asset is determined by which Solana EventStore program emitted the event, ensuring the
voucher’s asset type matches what was actually deposited. The commitment stored on-chain correctly
encodes asset type A. Note that a separate vulnerability exists where a user can unshield their correctly-
created commitment as a different asset type. We have reported this issue in finding “Cross-asset theft
vulnerability”.

- Threatb: User deposits Q tokens, but the total quantity of commitment created is Q’, where Q" #Q

Similar to Threat a, the shieldEvent.Amount is sourced from Solana on-chain events via the oracle. The
amount is correctly propagated from the EventStore to the voucher creation, ensuring the commitment
binds the deposited quantity Q.

- Threat c: User deposits Q tokens, but created commitment not spendable (cannot generate valid proofs
or nullifiers)

The threat does not hold. The commitment is added to the Merkle tree atomically via AddCommitment.
Spendability depends on the client possessing the correct spending key to generate valid nullifiers and
ZK proofs.

-+ Threat d: User deposits Q tokens, but created commitment controlled by a non-intended user (wrong
spending key derivation).

The threat holds. When a user shields tokens, they generate a balance note by deriving note_secret and
randomness from their spending keyand sequence number (code ref). The commitmentis then computed
as hash(hash(note secret, randomness), [amount, seq, 0, asset]) (code ref). This commitmentis
cryptographically bound to the specific spending key used during generation. However, if the pre-image
of the commitment is compromised, an attacker can spend the voucher using their own spending key
because the circuit verifies that the spending key used to compute the nullifier is the same spending key
that was used to create the commitment’'s note secret and randomness. Thisis the sameissue as the one
reported in finding “Note secret and randomness not cryptographically bound to spending key’.

Informal Systems © 2026 9

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L98-L115
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L535-L551
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L496C23-L497
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L498

informa

SYSTEMS

Zenrock Q1 2026 Security AuditReport

Property HUSH-03: If a user submits a valid unshield proof for
amount Q of asset type A with fee F, then after state transitions
are confirmed, the user receives Q tokens of asset type A, the pool
balance decreases by Q+F, and the fee F is collected

- Threat a: User unshields commitment of asset type A, butreceives tokens of asset type B
The threat holds.

» hush.masm: While asset type is cryptographically bound within individual commitments, it
is not included in the proofs public outputs (outputs commitment), allowing an attacker
to spend commitments of one asset type while claiming to spend a different asset
type, effectively converting between assets without authorization. The circuit loads asset
from advice (code ref) and correctly includes it in all commitment computations, ensuring
commitment = hash(hash(note secret, randomness), [amount, seq, 0, asset]). However, the
asset value is never included in the outputs commitment that binds the proof's public outputs. The
circuit uses one asset value to compute commitments and verify Merkle proofs, while the chain uses
msg.Asset from the transaction message to create new vouchers and determine the asset type for
unshielding. We have reported thisissue in finding “Cross-asset theft vulnerability’.

- Threatb: User unshields commitment for amount Q, but receives amount Q' on Solana where Q' #Q
The threat does not hold.

» hush.masm The circuit correctly includes the recipient amountin the outputs commitment for unshields
(as opposed to transfers where the amountis kept private by using 0—code ref).

» hush-wasm The library correctly passes the recipient amount to the proof generation and includes it
in the outputs commitment computation.

» x/hush: The module recomputes the outputs commitment using msg.Amount from the message and
verifies the ZK proof against this commitment. If a user attempts to generate a proof with amount
Q but submits a message claiming amount Q’, the proof verification will fail because the computed
outputs commitments will not match. Only after successful proof verification does the chain create
an UnshieldRequest with the validated amount, which is then used to construct the Solana transfer
instruction.

+ Threat c: Fee calculation contains arithmetic errors (overflow/underflow/rounding)

The threat does nothold for rounding/overflow/underflow during arithmetic operations (code ref), however,
thereis an edge case that can preventlegitimate users to transact (although the likelihood is low because
the user’s balance would need to be very large).

» hush.masm: The circuit performs all arithmetic in the Goldilocks field (modulo
p = 2764 - 2732 + 1 = 18446744069414584321), where operations automatically reduce results ex-
ceeding the modulus. However, the user-controlled amounts (new balance amount, recipient amount)
are pushed directly to the advice tape as raw u64 integers without field validation. When constructing
the advice inputs, these values are converted to Felt using Felt::new() (code ref), which does not
check if the value exceeds the Goldilocks modulus p = 2764 - 2732 + L

Informal Systems © 2026 10

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L329
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L645
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L228-L231
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3763-L3765

informa

SYSTEMS

Zenrock Q1 2026 Security AuditReport

» x/hush: The chain-side validation uses native Go uinté4arithmetic without field reduction, only checking
for uint64 overflow (values exceeding 2764 - 1). This creates a gap: amounts between the Goldilocks
modulus and 2764 - 1 will pass the chain’s overflow check. When individual values (msg.Amount or
msg.Fee) are >= GOLDILOCKS MODULUS these pass the chain’s overflow check but create invalid field
elements in the CosmWasm contract.

» miden-merkle: The x/hush module queries miden-merkle contract on endpoint
query rpo hash circuit passing the public outputs. The contract uses Felt: :new() which does not
reduce values >=modulus (ref) resulting in invalid Felt elements with values outside the field.

When both sides operate on invalid field elements (values >= 18446744069414584321), the resulting
behavior may produce incorrect results or undefined behavior. We have documented this issue in finding
“Unsanitized u64 as field element”.

- Threat d: Fee deduction skipped or bypassable, allowing unshield to proceed without required fees
The threat does not hold.

» hush.masm The circuit enforces conservation of value where the fee must be included in the
balance equation: total input = new balance + recipient amount + fee. The fee is cryptographi-
cally bound in the outputs commitment, preventing users from generating a proof with one fee value
but claiming a different fee in the message

» x/hush: The module enforces for unshields that supply.TotalShielded is decremented by
totalDeduction = amount + fee (code ref), ensuring fees are properly accounted for in supply track-

ing.

Property HUSH-04: If a user submits a valid shielded transfer proof
sending amount Q of asset type A with fee F to recipient R, then after
state transitions are confirmed, the sender’s commitment is nullified,
the recipient receives a spendable commitment for Q tokens of asset
type A, and the fee F is collected

- Threat a: Shielded transfer creates output commitment with an asset type different from the input
The threat does not hold.

» hush.masm: The circuitloads a single asset value (code ref) and uses this same asset for all three com-
mitments: the balance note being spent (code ref), the new balance note (code ref), and the recipient
note (code ref). The input commitment's asset type is cryptographically enforced through Merkle path
verification, and all output commitments are guaranteed to contain the same asset. Therefore, the actual
commitment hashes never have mismatched asset types.

However, a related wulnerability exists: mismatched voucher metadata creates permanently unspend-
able funds. While the commitments themselves are internally consistent, the circuit does not bind the
asset tothe outputs commitment (code ref). Auser can generate a valid proof with asset A, but submit
MsgShieldedTransfer with asset B. The proof verifies successfully, and the chain creates vouchers
tagged with asset Bmetadata. These vouchers store commitmenthashes that contain asset A(crypto-

Informal Systems © 2026 N

https://docs.rs/miden-crypto/latest/miden_crypto/struct.Felt.html#method.new
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L232
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L333
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L377
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L532
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L583
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L631-L640

informa

SYSTEMS

Zenrock Q1 2026 Security AuditReport

graphically), butthe Asset field claims asset B. When attempting to spend later, the walletuses asset B
from metadata to compute the commitment preimage, producing a different hash that doesn’t exist in
the Merkle tree. The funds become permanently unspendable. This issue’s root cause is the same as
the one reported for finding “Mempool proof replay attack”.

- Threat b: Sender transfers amount Q, but recipient receives commitment with total amount Q" where Q’
#=Q

The threat does not hold.

» hush.masm: The circuit enforces that the recipient amount value is loaded exactly once
from the advice tape (code ref) and stored in memory. This single value is then
used both in the recipient commitment computation (code ref) and in the conservation
of value equation (code ref). The commitment cryptographically binds the amount as
hash(hash(note secret, randomness), [amount, O, O, asset]), and the conservation check en-
forces total input = new balance amount + recipient amount + fee.

- Threat c: Sender transfers amount Q, but created commitment not spendable by the recipient (cannot
generate valid proofs or nullifiers)

The threat does not hold.

» hush.masm: The design requires the sender to deterministically derive note secret and randomness
from ECDH shared secrets with the recipient's pubkeys (code ref). However, please note that the circuit
does notenforce this derivation. The circuitaccepts arbitrary note secretand randomness values from
the advice tape and uses them to compute the commitment (code ref). If the sender uses incorrect
note secret or randomness values (whether through malice, software bugs, or incorrect recipient
pubkeys), the resulting commitment gets inserted into the Merkle tree and marked as the recipient’s
voucher. However, the recipient cannot decrypt the encrypted amount to learn the commitment pre-
image. The funds become permanently locked.

- Threat d: Sender transfers to recipientR, but created commitment controlled by a non-intended user
The threat does not hold.

» hush.masm: The design requires the sender to deterministically derive note secret and randomness
from ECDH shared secrets with the recipient’s pubkeys (code ref). Unless the sender uses the incorrect
recipient viewing pubkey (whether through software bugs, or human error) the created commitment
would be spendable by the intended recipient.

- Threat e: Fee calculation contains arithmetic errors (overflow/underflow/rounding)

The threat does not hold for rounding/overflow/underflow during arithmetic operations, however, there is
an edge case that can prevent legitimate users from transacting (although the likelihood is low because
the user’s balance would need to be very large).

Similarly as for Property HUSH-03, Threat c, while the transfer fee is fixed (code ref), user-controlled
amounts (new balance amount, recipient amount) are pushed directly to the advice tape as raw u64
integers without field validation. We have documented this issue in finding “Unsanitized u64 as field
element”.

Informal Systems © 2026 12

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L544
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L585
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L597-L598
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L1718-L1727
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L575-L576
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L1718-L1727
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L503

informa

SYSTEMS

Zenrock Q1 2026 Security AuditReport

- Threat f: Fee deduction skipped or bypassable, allowing transfer to proceed without required fees
The threat holds.

» x/hush: Ifauser does notprovide a FeeCommitment then hasFeeCommitmentis notsetand as aresultthe
fee-voucher-related code is not even called. Even worse, even if a FeeCommitment is provided, there is
no check that this commitment can be spent by the fee collector in any way, so the created fee voucher
remains unspendable or the user can send it back to himself.

Property HUSH-05: Commitments are created only with deposits or
as outputs from valid transfers, and nullifiers are added only with
withdrawals or as outputs from valid transfers

- Threat a: Transfer creates output commitment but fails to nullify input commitment

The threatdoesnothold. In ShieldedTransfer, nullifiers are marked spent(code ref), then output vouchers
are created (code ref). All operations execute within the same Cosmos SDK transaction context, ensuring
atomicity.

- Threatb: Input commitmentis nullified but output commitmentis not created

The threat does not hold. In both Unshield and ShieldTransfer handler, input and output commitments
are respectively nullified and created within the same atomic transaction. If the voucher creation
fails in Unshield (code ref) an error is returned, causing the entire transaction to revert. Similarly in
ShieldedTransfer, any failure in CreateChangeVoucherPrivate calls (code ref) reverts all state changes,
including nullifier marks.

- Threatc: Commitments created without corresponding shield eventor valid transfer proof (including cross-
assetreplay attacks where proofis valid but no actual deposit occurred on the target asset)

The threat does not hold under assumptions 4 and 5. Commitments can only be created through three
code paths:

1. Shield events: processShieldEvents creates vouchers only from consensus-verified oracle data
(code ref). Under assumptions 4 and 5, these events represent actual Solana deposits.

2. Unshield change vouchers: Created in Unshield handler only after ZK proof verification succeeds
(code ref).

3. Transfer output vouchers: Created in ShieldedTransfer handler only after ZK proof verification
succeeds (code ref).

- Threat d: Nullifiers marked as spent without valid proof verification

The threat does nothold. In both Unshield and ShieldTransferhandlers, nullifiers are marked spentonly
after the ZK proof verification succeeded.

Informal Systems © 2026 13

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L573
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L573
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L714-L730
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L720
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L665-L680
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L691-L733
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L300
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L693-L723
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L24-L67
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L651-L657
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L651-L657

informa

SYSTEMS

Zenrock Q1 2026 Security AuditReport

Property HUSH-06: The global supply accounting invariant Total-
Shielded + PendingUnshields + TotalUnshielded + TotalFeesBurned
= Total Ever Shielded always holds after any state transition

- Threat a: Integer overflow in TotalShielded counter

The threat does not hold under assumptions 4, 5, and 6. The TotalShielded counter is incremented in
processShieldEvents — createVoucherInternal (code ref) using the shieldEvent.amount originating
from the oracle data. Note that we have reported a related recommendation to add an integer overflow
check in the finding “Missing integer overflow check in x/hush module”.

- Threatb: Integer underflowin TotalShielded when processing unshields with fees

The threat does not hold. The TotalShielded counter is only decremented in the Unshield handler
(code ref), which explicitly checks for overflow before amount + fee addition and underflow before
TotalShielded -= totalDeduction.

- Threat c: Non-atomic updates to supply counters

The threat does not hold. All supply updates are executed atomically within the same transaction context
using Cosmos SDK’s transactional state management.

- Threat d: Fee calculation overflow or rounding errors cause the calculated fee to differ from the deducted
amount

The threat does not hold under assumptions 4, 5 and 6. All fee computations use integer arithmetic only
and are checked for overflow and underflow in the Unshield handler (code ref).

- Threat e: Fee deduction from TotalShielded not synchronized with TotalFeesBurnedincrement

The threat does not hold. The TotalShielded decrement and TotalFeesBurnedincrement are performed
atomically within the same transaction in the Unshield handler (code ref).

- Threat f: State migration or upgrade fails to preserve supply accounting correctly
The threat does not hold. The migration system uses two mechanisms that preserve supply accounting:

1. Devnet-only state clears: Migrations that clear state (v5—V6 through v12—v13) are guarded by a chain
ID prefix check that only allows execution on “amber” (devnet) chains (code ref). Non-amber chains
(including mainnet) skip these migrations entirely and preserve the existing supply.

2. Genesis exportfimport The ExportGenesis function properly exports the Supply struct (code ref), and
InitGenesis properly imports it (code ref), ensuring supply accounting is preserved during chain
upgrades via genesis state transfer.

3. Versioned migration system: Al migrations are registered via the Cosmos SDK’s
cfg.RegisterMigration (code ref), which ensures ordered, idempotent execution and prevents dupli-
cate or out-of-order migrations that could corrupt state.

Informal Systems © 2026 14

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L445
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L230-L238
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L230-L232
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L265-L269
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/migrations/v13/store.go#L57-L61
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/genesis.go#L127-L130
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/genesis.go#L76-L79
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/module/module.go#L115-L150

informa

SYSTEMS

Zenrock Q1 2026 Security AuditReport

Property HUSH-07: If a voucher record exists with commitment C,
then commitment C exists in the Merkle tree at some leaf position,
and sum of all spendable voucher amounts equals (total shielded) -
(total unshielded) - (total fees collected)

- Threata: Voucher record created in state but corresponding commitment notinserted into Merkle tree
The threat does not hold.

» x/hush: The voucher record is created in createVoucherInternal and stored in the state
through SetVoucher. Note that before SetVoucher, the corresponding commitment is added
through AddCommitment that calls the Merkle contract. If AddCommitment fails to be added,
createVoucherInternalreturnsimmediately without creating the voucher in the state. Therefore, in
normal conditions, this threat holds.

- Threatb: Commitmentinserted into the Merkle tree, but no corresponding voucher record created
The threat does not hold.

» x/hush: From the x/hush module perspective, the same applies as in Threat a. There is a small differ-
ence, in case a voucher is also created during shield events that takes place in PreBlocker, potentially
having a successful AddCommitment butthen failing to add the voucherin the store, and hence this shield
eventis omitted even though a commitment was added due to it. This can only happen due to storage
corruption which we assume is not the case or if the len(commitment) !'= 32 butif this was the case
AddCommitment would also fail.

- Threatc: Same commitmentinserted multiple times at differentleaf positions, allowing multiple spends via
different Merkle paths

The threat does not hold but can lead to issues.

» x/hush: Although the same commitment can be inserted multiple times at differentleaf positions, itdoes
not allow for multiple spends.

The same commitment can be inserted multiple times if a user initiates two shielding events with the
exact same commitment thatare both in processShieldEvents. During the first processing of the shield
event, a voucher would be created for this commitment. Then, when the second shield eventis being
processed (this can happen because it has a different shieldEvent.TxId and shieldEvent.LogIndex
than the first shield event), it will also create a voucher for the exact same commitment, and furthermore
overwrite CommitmentToVoucherStore the nextID of this commitment. Nevertheless, double spending
is not possible because the nullifier for this commitment can only be used once. When the user spends
one voucher, the nullifier is marked as spent and the user cannot use the other voucher.

The same issue can potentially appear in Unshield and ShieldedTransfer but would need extra effort
from the user to create NewBalanceCommitment.

Due to the above we can have erroneous supply stats and bad U X (see finding “Erroneous supply stats”).

- Threatd: Commitmentinsertion reports success, but the internal tree state is not updated correctly

Informal Systems © 2026 15

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L423
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L391
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L393
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L46
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci.go#L433
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L75
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L272
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go#L168
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L24
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L44-L68
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L26
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L26
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L26
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L26
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L432

infor

SYS

zQ
» —_—

=
m

Zenrock Q1 2026 Security AuditReport

The threat does not hold.

» miden-merkle: The commitment insertion process in the miden-merkle contract is protected by
CosmWasm'’s transaction atomicity guarantees, which ensure that tree state cannot become inconsis-
tent with reported success.

When the sudo add commitment() function executes, all storage operations write to a cached state
rather than directly to persistent storage. If any operation in this sequence fails, the entire transaction is
rolled back atomically, discarding all cached changes and returning an error to the caller.

Furthermore, the tree update algorithm itselfis mathematically correct, implementing proper parenthash
computation with correct sibling selection and node position encoding that prevents collisions.

Since the keeper receives an error if anything fails and the contract only returns success after all state
has been committed atomically, there is no scenario where commitment insertion can report success
with incorrectly updated internal tree state.

- Threat e: State migration, upgrade, or error recovery causes permanent desynchronization between
voucher records and the tree

At the current state the threat does not hold.

» x/hush: In case of an exported genesis file, the Merkle-tree state is exported and is taken care of by
x/wasm. For the x/hush module, the genesis exports and imports the whole state as expected. Note
that GenesisState does notinclude CommitmentToVoucherStore but this state is re-constructed during
InitGenesis.

Property HUSH-08: Only a user who knows the complete commit-
ment pre-image (note secret, randomness, amount, asset) and holds
the spending key from which the nullifier key is derived can spend
that commitment

- Threat a: Circuit fails to cryptographically bind nullifier key and note secret to the same root
spending key

The threat holds. The circuit derives nullifier key from spending key (code ref) but loads all
note secret (an randomness) values for balance note (code ref) and incoming notes (code ref) directly
from the advice stack, without verifying they were derived from the same spending key. Since nullifiers
are computed as hash(nullifier key, commitment) where commitmentdependson note secret (and
randomness), an attacker can use the same commitment with different spending keys to generate different
nullifiers, bypassing double-spend protection. See finding “Note secret not cryptographically bound to
spending key’ for more details.

- Threatb: Circuit allows the prover to use arbitrary nullifier keynotderived from the spending key that
created the commitment

The threat does not hold. The circuit correctly enforces that nullifier key is de-
rived from spending key. The circuit loads spending key from advice (code ref),

Informal Systems © 2026 16

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/app/app.go#L1059
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/genesis.go
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L43-L54
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L43-L54
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/genesis.go#L11
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/genesis.go#L52
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L349
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L361
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L432
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L324

informa

SYSTEMS

Zenrock Q1 2026 Security AuditReport

and it executes exec.derive nullifier key (code ref) which deterministically com-
putes nullifier key = hash(spending key || NULLIFIER KEY DOMAIN) (code ref). The derived
nullifier key is then stored in memory and wused for all nullifier computations via
exec.compute nullifier. However, as explained in Threat a, the circuit does allow arbitrary
spending keystobe provided, which, combined with the factthat note secretisnot verified to be derived
from that same spending key, enables the double-spend vulnerability previously identified.

- Threat c: Circuit allows spending with knowledge of the pre-image but without proving ownership of the
corresponding spending key

The threat holds. The circuit only verifies that the prover knows the commitment pre-image (note secret,
randomness, amount, seq, asset) and that this commitmentexistsin the Merkle tree. Itnever verifies that the
provided spending key has any relationship to the commitmentbeing spent. Thisis precisely the double-
spend wulnerability identified earlier: knowing the commitmentpre-image is sufficient to spend, and there’s
no cryptographic proof of spending key ownership over that specific commitment.

- Threatd: nullifier key derivation uses weak domain separation (e.g., missing or non-unique separators,
separators that allow collisions)

The threatdoesnothold. The nullifier key derivation uses strong, collision-resistantdomain separation. The
circuit implementation uses a unique constant NULLIFIER KEY DOMAIN = 7310582938571023456 (code

ref).

- Threat e: Note secret derivation uses weak domain separation (e.g., missing or non-unique separators,
separators that allow collisions)

The threat does not hold. The note secret derivation uses strong, collision-resistant domain separation
with unique separators for each purpose. The implementation uses two distinct derivation paths: (1) Bal-

ance notes derive note secret = hash(spending key || "zenrock.hush.balance note.vl" || seq)
(code ref), and (2) Stealth fransfers derive
note secret = hash(ECDH shared secret || "zenrock.hush.note secret.vl") (code ref).

- Threat f: Message sender validation insufficient, allowing user A to submit valid proof generated by user
B and spend B’s commitment

The threat holds. The recipient address (Solana destination) of MsgUnshield (code ref) is not crypto-
graphically bound to the ZK proof, allowing proof interception and fund redirection attacks. For unshield
operations, the circuit sets recipient commitment = zeros(coderef), and the recipient address string
fieldisneverincludedin the outputs commitment(coderef). The chain only validates therecipientaddress
for base58 format, not cryptographic binding to the proof.

If Alice generates a valid ZK proof to unshield funds to her Solana address and Bob intercepts the proof
bytes, then Bob can construct a new MsgUnshield transaction with: (1) his own address as creator, (2)
Alice’s ZK proof, (3) Alice’s nullifiers/commitments/amounts (unchanged), (4) Bob’s Solana address as
recipient address. The proof verification succeeds because it only validates nullifiers, commitments,
and amounts (the recipient address is completely unconstrained). The unshield proceeds and funds are
sentto Bob’s Solana address instead of Alice’s. We have reported thisissue in finding “Unshield recipient
address not cryptographically bound to ZK proof”.

Informal Systems © 2026 17

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L349C5-L349C30
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L184-L191
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L130
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L130
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L405
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/proto/zrchain/hush/tx.proto#L66
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L175
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go#L462-L501

Zenrock Q1 2026 Security AuditReport

- Threat g: Nullifier extracted from proof outputs does not match the nullifier being marked as spentin state,
allowing commitment to remain spendable

The threat does not hold. The nullifier marked as spentin the state is cryptographically bound to the ZK
proof and cannot differ from the nullifier proven in the circuit.

The circuit computes the balance nullifier as hash(nullifier key, commitment) and storesitin memory
(code ref). This nullifier is then included in the outputs commitment computation (code ref), which
becomes a public input to the verifier. When the chain processes the transaction, it recomputes
the outputs commitment using msg.Nullifier from the message (code ref MsgUnshield, code ref
for MsgShieldedTransfer) and verifies the proof against this commitment. If an attacker attempts to
provide a different nullifier in msg.Nullifier than what the circuit computed, the chain’s recomputed
outputs commitment will not match the one in the proof, causing verification to fail. Only after successful
verification does the chain mark msg.Nullifier as spent, ensuring that the nullifier marked in the state is
exactly the one that was cryptographically proven.

Similarly, for incoming notes, their nullifiers are included in the public outputs (code ref), and if proof
verification succeeds, the nullifiers are marked as spent.

Property HUSH-09: If a user has spending key SK, then only holders
of keys derived from SK can decrypt voucher amounts: spending key
holder (full access), full viewing key holder (decrypt only, no spend),
incoming viewing key holder (decrypt received only), no key holder
(see only encrypted data)

- Threata: Encryption key derivation vulnerable to collision attacks, related-key attacks, or length extension
attacks due to weak key derivation function construction (e.g., single SHA256 instead of HKDF, missing
salt/context, insufficientiterations)

The threat does not hold. Currently, all inputs to rpo_hash internal operate on fixed-length inputs (e.g.,
32-byte shared secrets) or on concatenations where any variable-length componentis followed by a fixed,
non-zero-terminated domain separator. As a result, the zero-padding used in the byte-to-field encoding
does notintroduce ambiguity or collision risk under the existing design assumptions.

- Threat b: ECDH shared secret wvulnerable to small subgroup attacks or brute-force due to: (1) received
public keys not validated (low-order points, curve membership), or (2) generated private keys weak
(insecure RNG, insufficient entropy)

The threat holds, see finding “Missing shared secret validation”.

When generating the shared secret with the public key, ifitis all-zeros, then the encrypted value can then
be decrypted using any private key combined with the all-zeros shared secret.

- Threat c: Authenticated encryption (ChaCha20-Poly1305) fails to verify tags, uses predictable or non-
unique nonces, or leaks timing information

The threat does nothold. Decryption errors are handled withoutleaking information, and there are no fast/
slow paths depending on the result. Nonces and keys combinations are unique or generated randomly.

Informal Systems © 2026 18

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L388
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L630
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L179
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L633
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L655-L727

informa

SYSTEMS

Zenrock Q1 2026 Security AuditReport

- Threat d: Key hierarchy vulnerable to privilege escalation (deriving a higher privilege key from a lower
privilege key) due to reversible key derivation (e.g., XOR with constants, weak hash, algebraic relations)
instead of one-way cryptographic functions

The threat does not hold. The key derivations follow the key hierarchy described where the
wallet signatureis the highest privilege key, the spending key is derived from the wallet signer and
the other keys can be derived from the spending key.

-+ Threat e: Circuit public inputs expose private information (amounts, note secrets, randomness, or other
sensitive data) that should remain encrypted

The threat does not hold. The protocol uses only 8 field elements as public inputs: merkle root (4 felts)
and outputs commitment (4 felts) (code ref). All sensitive data (amounts, note secrets, randomness,
spending keys, asset type) are passed as private advice inputs and never exposed in public inputs. The
outputs commitment is an RPO hash binding public outputs (nullifiers, commitments, fee, and recipient
amount) but does not reveal the underlying values. For shielded transfers, privacy is maximized by
setting recipient amount = 0in the outputs commitment (code ref), with the actual amount encrypted
in encrypted recipient amount. For unshields, the amount and asset are intentionally public since the
unshield recipient address is visible on Solana anyway. No note secrets, randomness, or spending keys
appear in public inputs.

Property HUSH-10: If a user performs a shielded transfer of amount
Q from commitment C1 to recipient R, observers cannot determine
recipient’s identity, amount Q being transferred, or which commit-
ment C1 is being spent

- Threat a: Recipientidentity revealed through on-chain data (recipient address, recipient public key, non-
unique ephemeral keys)

» x/hush: The threat does not hold. Assuming the user performs shielded transfers carefully (i.e.,
sender randomness is random and not re-used across transfers and the user correctly derives the
ephemeral key), then this threat does nothold. In such a scenario, there is no way for an adversary to
look at EmphemeralPubKey to infer something meaningful (e.g., transfers stem from the same sender).
Additionally, the RecipientCommitmentis justas hash, as well as the recipient, asset, etc.

- Threatb: Transfer amount revealed through on-chain data (plaintext amounts, predictable encryption)

» x/hush: The threatdoes nothold. As with Threat a, if we make the same assumption, the transfer amount
is encrypted in EncryptedRecipientAmount.

+ Threat c: Input commitment (sender) revealed through on-chain data

» x/hush: The threat does nothold as long as MsgShieldedTransfer.Creatoris notre-used. Additionally,
the sender reveals their Nullifier butitis unlinkable to the commitment and even if someone could
correlate a nullifier to its original voucher, they would not learn who actually sent this amount.

Informal Systems © 2026 19

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L18-L24
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3599
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L741
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L748-L753
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L740

informa

SYSTEMS

Zenrock Q1 2026 Security AuditReport

Property HUSH-11: All protocol components correctly integrate with
Miden VM and produce cryptographic results (commitments, nulli-
fiers, hashes, Merkle paths) that are consistent with Miden VM circuit
behavior

- Threat a: Hash computations (commitments, nullifiers, Merkle nodes) in off-circuit implementations pro-
duce different values than the circuit's hmerge [hpermoperations foridentical inputs, causing commitment/
nullifier mismatches

The threat does not hold. For both the implementation of vm hmerge (hush-wasm) (code ref) and
hmerge circuit (miden-merkle) (code ref), when performing the hash of two words hash(A, B)
both Miden VM's hmerge and the off-circuit implementation produce a stack-ordered result
[result[3], result[2], result[1l], result[0]] (this represents hash(A, B) in stack order). The fol-
lowing table summarizes the steps of both operations for hashing A and B (with B on the top of the stack).

» Step 0: Input format
— Miden VM hmerge:
- Stack: [B[31, B[2]1, B[1]l, B[O], A[3], A[2], A[1l], A[O]]
- Words in stack order
— hmerge circuit(B, A) /vm _hmerge(B, A):
- Function receives Word structs:

» B

[B[3], B[2], B[1], B[0]] (stack order)

» A = [A[3], A[2], A[1l], A[0Q]] (stack order)

» Step 1: Convert to logical order
— Miden VM hmerge:

- Automatically reverses during stack—state mapping:

» B stack » B logical = [B[0], B[1], B[2], B[31]

» A stack -» A logical [A[O], A[1]l, A[2], A[3]]
— hmerge circuit(B, A) /vm _hmerge(B, A)

- Explicitly reverses each word:

» b_logical = [B[O], B[1], B[2], B[3]]

» a_logical = [A[O], A[1], A[2], A[3]]

Note:

Informal Systems © 2026 20

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L205
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L75

Zenrock Q1 2026 Security AuditReport

a_on_top (param) =B
b _on bottom(param)=A
» Step 2: Build RPO state
— Miden VM hmerge:
- Constructs 12-element state: [A logical, B logical, zeros]
- Applies RPO permutation
— hmerge circuit(B, A) /vm hmerge(B, A):
- Calls Rpo256: :merge([A logical, B logicall)
- Constructs same state [A logical, B logical, zeros]
» Step 3: Extract result
— Miden VM hmerge:
- Resultin logical order: [result[0], result[1l], result[2], result[3]]
— hmerge circuit(B, A) /vm hmerge(B, A):
+ Rpo256: :mergereturnsresultinlogical order: [result[0], result[1l], result[2], result[3]]
» Step 4: Convert to stack order
— Miden VM hmerge:

- Automatically reverses during state—stack mapping:
result logical - result stack = [result[3], result[2], result[1l], result[0]]

— hmerge circuit(B, A) /vm _hmerge(B, A):
- Explicitly reversesresult [result[3], result[2], result[1l], result[0]]
» Output format
— Miden VM hmerge:
- Stack: [result[3], result[2], result[1l], result[0]]
- Resultin stack order
— hmerge circuit(B, A) /vm hmerge(B, A):
- Returns Word: [result[3], result[2], result[1l], result[0]]

- Resultin stack order

Informal Systems © 2026 21

informa

SYSTEMS

Zenrock Q1 2026 Security AuditReport

- Threat b: Merkle tree implementation in miden-merkle contract uses a different hash function, node
ordering, or path format than the circuit's verify merkle path, causing valid proofs to be rejected

The threat does not hold. The miden-merkle contract uses the function hash nodes to hash intermediate
nodes and the root. This function internally uses hmerge circuit, which produces the same result as
hmerge. The Merkle path returned by the query query merkle path (code ref) consists of the leaf value
and a vector of siblings (starting from the sibling of the leaf) that are iteratively hashed to calculate the root.
Thisis consistent with the implementation of verify merkle path(code ref). The siblings are encoded as
4 field elements in stack order (big endian).

- Threat c: Public input ordering or encoding for proof generation/verification does not match circuits’
expectations

The threat does not hold. The ordering of public inputs is the same in hush-wasm (code ref) and in x/hush
(code ref).

+ Threat d: Commitment computation in hush-wasm differs from circuit computation

The threat does not hold. Commitment computation in functions compute commitment internal (code
ref) and compute balance commitment internal (code ref) of hush-wasm (code ref) produce the same
result as the circuit's commitment computation (code ref). The commitment is logically computed as
hash(hash(note secret, randomness), [asset, 0, sequence, amount]) and the implementations in
hush-wasm performs the same steps as in the circuit:

» Calculate stepl by applying hmerge on a stack with [randomness, note secret] with field elements of
both words in stack order (big endian).

» Calculate commitment by applying hmerge on a stack with [amount, sequence, 0, asset, stepll].
+ Threat e: Commitment computation in miden-merkle differs from circuit computation

The threat holds. Commitment computation in query query compute commitment of
miden-merkle (code ref) does not produce the same result as the circuits com-
mitment computation (code ref). The commitment should be logically computed as
hash(hash(note secret, randomness), [asset, 0, sequence, amount]) but the implementation in
miden-merkle performs the following steps:

» Calculate stepl by applying hmerge on a stack with [randomness, note secret] with field elements of
both words in stack order (big endian).

» Calculate commitment by applying hmerge on a stack with [0, 0, asset, amount, stepl] instead of
[amount, sequence, 0, asset, stepll.

We have documented this issue in finding “Commitment field ordering inconsistency’”.
-+ Threat f: Nullifier computation in hush-wasm differs from circuit computation

The threat does nothold. Nullifier computation in function compute nullifier v2 internalin hush-wasm
(coderef) produces the same result as the circuit’s nullifier computation (code ref). The nullifier is logically
computed as hash(nullifier key, commitment) and the implementation in hush-wasm performs the

Informal Systems © 2026 22

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L498
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L214
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3644-L3652
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L361-L372
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L276
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L276
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L435
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L276
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L360-L383
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L435
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L360-L383
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L309C4-L309C33
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L198-L206

informa

SYSTEMS

Zenrock Q1 2026 Security AuditReport

same step as in the circuit Applies hmerge on a stack with [commitment, nullifier key] with field
elements of both words in stack order (big endian).

- Threat g: Nullifier computation in miden-merkle differs from circuit computation

The threat does nothold. Nullifier computation in query query compute nullifierin miden-merkle(code
ref) produces the same result as the circuit's nullifier computation (code ref). The nullifier is logically
computed as hash(nullifier key, commitment) and the implementation in miden-merkle performs the
same step as in the circuit. Applies hmerge on a stack with [commitment, nullifier key] with field
elements of both words in stack order (big endian).

- Threat h: Field element reduction or modular arithmetic differs between components (Goldilocks field
modulus 2764 - 232 + 1 not consistently applied)

The threat holds. Not all locations in hush-wasm, miden-merkle and miden-verifier that create a field
element from a u64 (with Felt::new()) reduce the input value modulo Goldilocks by using the function
to field safe (code ref). For example, the implementation of bytes to wordin miden-merkle doesn’t
call to field safe (code ref) while bytes to word internalin hush-wasmdoes (code ref). See finding
“Unsanitized u64 as field element”.

+ Threat i: Domain separation constants (NULLIFIER_KEY_DOMAIN, NOTE_SECRET_DOMAIN, etc.) not
consistent across Rust and assembly

The threat does nothold. The function derive nullifier key circuit internalin hush-wasm(code ref)
uses the same domain separator constant (code ref) as the circuit (code ref). The circuitdoes not compute
the note secret and thus does not use its domain separator.

Property HUSH-12: The Merkle tree implementation provides sound
membership proofs: valid proofs are accepted for leaves in the tree,
and no valid proof exists for leaves not in the tree; the tree preserves
insertion order and historical roots

- Threat a: Hash function used in the Merkle tree is not collision-resistant, allowing an attacker to find two
different commitments with the same hash

The threat does not hold. The Merkle tree uses RPO256 (Rescue Prime Optimized) as its hash function,
which provides strong collision resistance guarantees.

- Threatb: Merkle tree function is not second preimage resistant

The threat holds, but it is mitigated. While the Merkle tree implementation is theoretically vulnerable
to second preimage attacks—intermediate node hashes are observable and could be targeted to find
alternate paths—this threat is fully mitigated by the ZK circuit constraints and does not pose a practical
security risk.

- Threatc: Given a commitmentin the tree, the Merkle path generation fails or produces an invalid path that
does not verify against the root

Informal Systems © 2026 23

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L464
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L464
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L198-L206
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L129
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L108
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L36
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L2964
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L2927
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L187
https://docs.rs/miden-crypto/latest/miden_crypto/hash/rpo/struct.Rpo256.html

informa

SYSTEMS

Zenrock Q1 2026 Security AuditReport

The threat does nothold. The Merkle path generation implementation cannot produce invalid paths under
normal operation. All commitments are validated to be exactly 32 bytes before storage (code ref), all nodes
are stored viaword to bytes() which always produces 32 bytes (code ref), and missing entries in sparse
tree positions correctly return computed empty subtree hashes rather than errors (code ref 1, code ref
2). The only theoretical error path in bytes to word (code ref) cannot occur given these validation guar-
antees. The threat does not hold and would only manifest in cases of storage corruption or catastrophic
database failure affecting the entire blockchain node.

- Threatd: Given acommitmentnotin the tree, a Merkle path can be constructed that falsely verifies against
the root

The threat does not hold. An attacker cannot provide fake proofs on fake roots because the root validation
mechanism at x/hush requires all Merkle roots to be either the current root or present in ROOT HISTORY
(code ref). Roots can only be added to history through the Sudo-protected AddCommitment endpoint(code
ref), which is exclusively callable by the x/hush module during legitimate shield event processing. Even if
an attacker could mathematically generate a valid ZK proof against an arbitrary root value, thatroot would
fail the IsValidMerkleRoot check and the transaction would be rejected.

- Threate: Tree does not handle edge cases correctly (empty tree, single leaf, full tree, tree depth limits)

The threatdoes nothold. The Merkle tree implementation correctly handles all edge cases through explicit
validation and proper empty subtree computation. Empty trees are properly initialized by computing
empty leaf() = hash(0) and hashing it with itself depth times (code ref). Sparse tree positions use the
same recursive formula to compute empty subtree hashes at any level (code ref), ensuring consistency
between initialization and path generation. Full tree conditions are explicitly prevented with capacity
checks thatreturn TreeFull error when next leaf index >= 2~depth (code ref).

- Threat f: Insertion order is not preserved or deterministic, causing different nodes to compute different
roots for the same commitment set

The threat does not hold. The Merkle tree insertion is fully deterministic and order-preserving. Each
commitmentis inserted at the position next leaf index (code ref), which is a monotonically increasing
counter stored in the tree state and incremented after each insertion (code ref). The insertion algorithm
is deterministic: given a leafindex, it computes the parent hash using a fixed formula based on whether
the index is odd (right child) or even (left child) (code ref), stores all intermediate nodes at deterministic
positions (code ref), and updates the root.

- Threatg: Historical root preservation fails, causing valid proofs with recent historical roots to be incorrectly
rejected

The threat holds. The contract stores historical roots using block.height as the key in the ROOT HISTORY
map (code ref). When multiple commitments are added within the same block (e.g., multiple
MsgShieldedTransfer or MsgUnshield transactions in a single block), each call to sudo _add commitment
updates the Merkle tree root and attempts to save it to ROOT HISTORY with the same block.height key.
This causes intermediate roots to be overwritten (only the final root from the last commitment addition in
that block is preserved in history). Users who generate proofs against intermediate roots (created earlier
in the same block) will have their proofs rejected during IsValidRoot checks, even though those roots
were valid atthe time the commitment was added. We have reported thisissuein finding “AddCommitment
overwrites”.

Informal Systems © 2026 24

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L230-L232
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L41-L48
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L298
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L307
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L307
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L30
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L161-L168
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L214
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L214
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L98-L105
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L306-L310
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L220-L228
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L234
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L277
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L245-L260
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L267-L268
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L272

informa

SYSTEMS

Zenrock Q1 2026 Security AuditReport

- Threat h: Root history retention policy not enforced, allowing roots to be dropped before the configured
period or keptbeyond limits

The threat does not hold. The contract intentionally separates the validation window (controlled by a
configurable HISTORY SIZE)from storage retention (unlimited). The execute update history sizeadmin
function allows runtime tuning of the proof validity window without requiring contract migration. While this
causes unbounded storage growth, it doesn’t affect query costs. A recommended root history cleanup
mechanism is detailed in the “Miscellaneous code improvements” section.

Property HUSH-13: All message fields are validated before process-
ing
- Threata: MsgUnshield message inputs are not properly validated before processing

The threat holds. MsgUnshield message inputs are not properly validated before processing. A finding
has been reported “Missing message validation in Unshield handler”.

- Threatb: MsgShieldedTransfer message inputs are not properly validated before processing

The threat holds. MsgShieldedTransfer message inputs are not properly validated before processing. A
finding has been reported “Missing inputs validation in Unshield handler”.

+ Threat c: MsgUpdateParams message inputs not properly validated before processing

The threat does not hold. The UpdateParams handler validates authority via CheckAuthority (code ref),
then calls SetParams which is expected to perform internal validation. Authority validation prevents unau-
thorized parameter modifications.

+ Threatd: SudoMsg: :AddCommitment message inputs not properly validated before processing

The threat holds. The sudo add commitment () function (code ref) implements basic structural validation
by checking that commitments are exactly 32 bytes and that tree capacity is not exceeded, preventing
length-based attacks and overflow conditions. However, the function lacks field element validation
for the commitment bytes. When converting the 32-byte commitment to four field elements via the
bytes to word() function (code ref), the code uses Felt::new(u64::from le bytes(arr)) (code ref)
which does not validate that the resulting u64 values are less than the Goldilocks field modulus. While
Felt::new() mayinternally reduce values modulo p, accepting out-of-range inputs creates a trust bound-
aryissue where the contract accepts commitments that were not properly validated during their off-chain
generation, potentially leading to inconsistencies between on-chain and off-chain hash computations if
the client's commitment generation uses different validation logic. This issue has been reported in the
“Unsanitized u64 as field element” finding.

Another validation gap is the absence of an explicit check rejecting commitments that equal the
empty leaf() value (RPO hash of [0,0,0,0]), which could theoretically cause confusion in Merkle proof
verification if such a collision occurred, though the cryptographic improbability makes this purely a
defense-in-depth consideration rather than a practical security concern. Arecommendation for thisissue
has been explained in the “Miscellaneous findings on CW contracts” section.

- Threate: ExecuteMsg: :UpdateHistorySize message inputs are not properly validated before processing

Informal Systems © 2026 25

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L32-L34
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L214
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L28
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L36

informa

SYSTEMS

Zenrock Q1 2026 Security AuditReport

The threat does not hold. The only input parameter thatis provided to this function is the new size: u32
parameter (code ref), and the only present validation is a check that this parameter does not equal zero.
This validation is sufficient. Since this function is only callable by the contract admin, the admin can
increase or decrease the HISTORY SIZE storage variable.

By doing so, the admin modifies how many of the last ROOT HISTORY entries can be queried by the user.
The ROOT HISTORY storage variable stores the historical root hashes, while the HISTORY SIZE determines
how many of them can be queried and used to submit proofs for.

+ Threat f: ExecuteMsg: :UpdateAdmin message inputs are not properly validated before processing

The threat holds. From the validation standpoint, the only input parameter that is provided is the
new admin: Option<String> parameter (code ref), which is properly validated. It follows the best prac-
tices by being of String type, and by being validated via the deps.api.validate() function. There are
no other validations necessary for this input parameter.

Even though an invalid new admin parameter cannot be provided, the whole admin update process is
implemented in the execute update admin() does not follow the best practices. The process is imple-
mented in a single step, where the admin only overwrites its address by adding the new admin, which
does not follow the best practices regarding the admin update process.

The admin is assumed to be a trusted and reliable source, but operational errors can still happen.
To mitigate the risk of administrative lockout and to ensure that admin updates are both valid and
explicitly acknowledged, the contract should use the two-step ownership transfer pattern provided by the
cw-ownable library.

The library enforces a proposal — acceptance workflow before ownership changes are finalized. It
ensures that no contract can become ownerless or accidentally locked due to operational errors.

This issue has been reported in the “Lack of confirmation during admin updates” finding.
- Threat g: SudoMsg: :Verify message inputs are not properly validated before processing

The threatholds. The hash parameter is adequately protected by RpoDigest: :read from bytes(), which
enforces the exact 32-byte size requirement and rejects malformed inputs, making additional validation
redundant.

The inputs parameter is constructed deterministically by the keeper to always contain exactly 8
elements, and while Miden’s StackInputs::try from ints() (code ref) silently pads any input size up
to 16 elements with zeros, this behavior cannot be exploited maliciously. However, this silent padding
mechanism can mask programming bugs in the Go layer, leading to cryptic verification failures that are
difficult to debug. Arecommendation for this issue has been explained in the “Miscellaneous findings on
CW contracts” section.

The proof parameter accepts arbitrarily large base64-encoded strings without size bounds, representing
a fail-slow inefficiency where oversized proofs waste gas during decode and deserialization before
eventually failing verification. While this creates user friction for accidental misuse (paying unnecessary
gas fees for malformed proofs), it does not constitute a practical DoS vector since attackers must pay for
all consumed gas, making the attack economically self-defeating.

Informal Systems © 2026 26

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L161
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L188
https://crates.io/crates/cw-ownable
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-verifier/src/contract.rs#L77

informa

SYSTEMS

Zenrock Q1 2026 Security AuditReport

The outputs parameter suffers from a confusing APl design using a nested Vec<Vec<u64>> structure when
only a single Vec<u64> is needed when calling the StackOutputs::new() function (code ref), and it only
utilizes the first element while silently discarding the rest, though this too is limited to causing developer
confusion rather than security issues. Arecommendation for this issue has been explained in the “Miscel-
laneous findings on CW contracts” section.

Adding explicit size validation for inputs (expecting exactly 8 elements), enforcing an upper bound on
proof size, and either flattening the outputs structure or validating that only one array is provided would
significantly improve code robustness and debugging experience.

- Threath: InstantiateMsg message inputs are not properly validated before processing

The threatholds. The instantiate() function (code ref) does not validate the tree depthinputparameter,
which can lead to the parameter being setto a value 264. This can then cause overflows in the downstream
execution when calling max_tree capacity() (coderef)and node position() (code ref) functions, which
prevents any commitments from being added. This issue has been reported in the “Missing tree depth
validation makes the contract unusable” finding.

Another problem is that the instantiate() function does not verify thatthe history sizeisnotzero. This
check is explicitly implemented in the execute update history size() function.

Property HUSH-14: Queries are properly constructed with valid para-
meters, execution errors are handled correctly, and responses are
correctly interpreted by the caller

- Threat a: QueryMsg: :RpoHashCircuit constructed with invalid parameters, execution errors not handled,
or response misinterpreted by the caller

The threat does nothold. RpoHashCircuit correctly setsits parameters and returns the response from the
Merkel contract. Specifically, RpoHashCircuitis called from ComputeOutputsCommitmentV7 thatgenerates
an inputs slice with 112 uint64 thatis passed to RpoHashCircuit and eventually to the contract that uses
those values without returning an error.

- Threat b: QueryMsg: : GetMerklePath constructed with invalid parameters, execution errors not handled,
or response misinterpreted by the caller

The threatdoesnothold. The GetMerklePathquery gets a LeafIndexas aparameter. Thisleafindexstems
from the voucher retrieved in MerklePath and this voucher was created here so the leafindexis correctly
setand the leaf exists (so we are notin this case). The response from the queryis correctly converted and
used by the MerklePath caller.

- Threat c: QueryMsg: :IsValidRoot constructed with invalid parameters, execution errors not handled, or
response misinterpreted by the caller

The threat does not hold wunder specific cases. IsValidRoot is called from
IsValidMerkleRootFromContract and gets as a parameter a Root and returns whether itis valid or not.
The provided parameter is checked thatithas the rightlength in Unshield andin ShieldedTransfer.

Informal Systems © 2026 27

https://github.com/0xMiden/miden-vm/blob/next/core/src/stack/outputs.rs#L35
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L92
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L18
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L318
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go#L422
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go#L462
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L379-L388
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L379-L388
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go#L264
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/query.go#L360
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L432
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L501
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go#L289-295
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/query.go#L379
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/query.go#L379
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L338
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go#L305
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L490
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L57
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L506

informa

SYSTEMS

Zenrock Q1 2026 Security AuditReport

T Note that IsvalidRoot might miss some roots if those are overwritten due to AddCommitment (we
describe this issue in more detail in finding “AddCommitment overwrites”).

+ Threatd: QueryMsg: : GetRoot execution errors not handled or response misinterpreted by the caller

The threat does not hold. GetRoot does not take any parameters and loads the tree state storage and
extracts from that state the root, so it operates like GetTreeState with the addition that the state (that
is instantiated) of the root is also returned. GetMerkleRoot that queries GetRoot correctly retrieves the
response and returns the root.

- Threate: QueryMsg: : GetTreeState execution errors not handled or response misinterpreted by the caller

The threatdoesnothold. GetTreeState doesnottake any parameters andloads the tree state from storage
and the state is initialized so loading of the tree state succeeds. GetMerkleTreeStateFromContract that
queries the tree state correctly retrieves the response and sets the corresponding MerkleTreeState fields
and in case of errors, those are handled (and here).

- Threatf: QueryMsg: :GetVerifResult execution errorsnothandled or response misinterpreted by the caller

The threat does not hold. GetVerifResult does not take any parameters and simply returns the
result stored in deps.storage. GetVerifResult is called from VerifyZKProof after the proof has been
validated and the result has already been stored. Note that in case of a successful verification
"Execution verified!" is returned, which is exactly the same string against which VerifyZKProof
performs the check.

Property HUSH-15: Wallet signatures used for key hierarchy deriva-
tion are treated as secrets and never persisted, logged, or transmit-
ted

+ Threat a: Wallet signatures persisted to browser storage allowing extraction after the session ends

The threat does not hold. The current implementation of hush-wasm doesn’t use any persistent storage.
The functions in hush-wasm are pure functions without states. The wallet related relevant code is in web/
directory — which is out of scope.

- Threatb: Wallet signatures logged to console, debug logs, or error messages allowing exposure through
developer tools or log aggregation

The threatdoes nothold. The currentimplementation of hush-wasmdoes notlog or output wallet signatures,
but errors should still be improved as mentioned in “Miscellaneous findings on hush-wasm’” to ensure no
sensible data is exposed.

- Threat c: Wallet signatures transmitted over network (analytics, telemetry, API calls) allowing interception
or server-side logging

The threat does not hold. The currentimplementation of hush-wasm only uses pure functions without any
side effects or states. So, there is no network access. The related relevant code is in web/ directory —
which is out of scope.

Informal Systems © 2026 28

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L325
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L346
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L114
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L326
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L351
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L114
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go#L247-L248
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go#L253
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-verifier/src/contract.rs#L113
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-verifier/src/contract.rs#L122
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-verifier/src/contract.rs#L122
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L746
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L738
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L738
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-verifier/src/contract.rs#L66
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-verifier/src/contract.rs#L99
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-verifier/src/contract.rs#L99
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L758

informa

SYSTEMS

Zenrock Q1 2026 Security AuditReport

- Threat d: Wallet signatures not cleared from memory after spending key derivation, leaving them acces-
sible to memory inspection

The threat holds. The variable padded in fn rpo hash internal can hold the signature but
padded.zeroize() is not called.

+ Threat e: Wallet signatures included in the serialized state for wallet recovery or session restoration

The threat does not hold. The wallet signatures are notincluded in serialized states.

Property HUSH-16: Private keys (spending, nullifier, viewing) are
never leaked through explicit channels (logging, network transmis-
sion, plaintext storage) or side-channels (timing, cache behavior)

- Threat a: Private keys logged to console, debug logs, or error messages allowing exposure through
developer tools or log aggregation

The threat does not hold. The current implementation of hush-wasm does not log or output private keys,
but errors should still be improved as mentioned in “Miscellaneous findings on hush-wasm” to insure no
sensible data is exposed.

- Threat b: Private keys transmitted over network (analytics, telemetry, API calls, WebSocket connections)
allowing interception or server-side logging

The threat does not hold. hush-wasm doesn’t use any network access. Looking at the errors logs we don’t
find any private data leakage.

- Threat c: Private keys stored in plaintext in browser storage without encryption
The threat does not hold. The hush-wasmuses pure functions without persistent states.
- Threat d: Private keys exposed through JavaScript error stack traces or exception messages
The threat does not hold. The error strings are free of private data.
- Threat e: Private keys passed to third-party libraries or browser extensions with excessive permissions

The threat does nothold. hush-wasmis self contained without any unreasonable cargo dependencies. The
wasm blob will be compiled by code authors, whose responsibilityis to make sure the cargo dependencies
are not compromised.

- Threat f: Private keys not cleared from memory after cryptographic operations, leaving them accessible
to memory inspection

The threatholds. As zeroize() is notcalled on all variables holding private key information when they are
not used anymore.

- Threat g: Secret-dependent comparisons (key verification, nullifier checks) not using constant-time algo-
rithms, leaking information through timing differences

Informal Systems © 2026 29

informa

SYSTEMS

Zenrock Q1 2026 Security AuditReport

The threat does nothold. There are fewusages of ct _eqbutthere are still some (in)equalities that use Rust
native operations on Vec types. They will not execute in constant-time. But these are on public on-chain
data, including the existing eq_ct calls which return the matched data.

- Threath: Cryptographic operations have variable execution time or secret-dependentbranches, enabling
timing or cache-based side-channel attacks.

The threat does nothold. There are few cases where the loop terminated if some condition is met. But the
data are on-chain public data.

Informal Systems © 2026 30

informal
SYSTEMS
Zenrock Q1 2026 Security AuditReport
Name Type Severity Status

Unshield recipient address not crypto- Design 4 - Critical Resolved

graphically bound to ZK proof
Note secret and randomness not crypto- Design 4 - Critical Resolved

graphically bound to spending key
Cross-asset theft vulnerability Design 4 - Critical Resolved
Circumventing fees Design 4 - Critical Resolved
Reusing balance nullifier Implementation 4 - Critical Resolved
Hardcoded note sequence limit Implementation 4 - Critical Resolved
Integer overflow in balance accumula- mplementation 3 - High Resolved
tion
Unsanitized u64 as field element Implementation 3 - High Resolved
Missing shared secret validation Implementation 3 - High Resolved
Stealth recovery mismatch Implementation 3 - High Resolved
Missing message validation in xhush |mplementation 3 - High Resolved
handlers

Cross-chain linkability Design 2 - Medium Resolved
Mempool proofreplay attack Implementation 2 - Medium Resolved
Missing tree depth validation makes the mplementation 2 - Medium Resolved

contractunusable

Informal Systems © 2026 31

informal
SYSTEMS
Zenrock Q1 2026 Security AuditReport
Name Type Severity Status
Lack of confirmation during admin up- Implementation 2 - Medium Resolved
dates
Nullifier key derivation mismatch in ac- Implementation 2 - Medium Resolved
countrecovery
Erroneous supply stats Implementation 2 - Medium Resolved
Unbounded Merkle Depth (DoS vector) Implementation 2 - Medium Resolved
Unbounded JSON string (DoS vector) Implementation 2 - Medium Resolved
Missing host-side new balance valida- mplementation 2 - Medium Resolved
tion (DoS vector)

Silentrecipient string truncation Implementation 2 - Medium Resolved
AddCommitment overwrites Design 2 - Medium Resolved
Missing check for leaf_index Implementation 1-Low Resolved

Commitment field ordering inconsis- |mplementation 1 -Low Resolved
tency

Duplicate vouchers compute wrong bal- Implementation 1 -Low Resolved
ance

Missing integer overflow checkin xhush |mplementation 0 - Informational Resolved

module
Note secret derivation inconsistency be- |mplementation 0 - Informational Resolved
tween balance notes and vouchers
Duplicate incoming notes not validated |mplementation 0 - Informational Resolved
Informal Systems © 2026 32

informal
SYSTEMS
Zenrock Q1 2026 Security AuditReport
Name Type Severity Status

Viewing key lifetime leak Design 0 - Informational Resolved
Miscellaneous findings on hush-wasm Implementation 0 - Informational Reported
Miscellaneous findings in hush.masm jmplementation 0 - Informational Resolved
Miscellaneous comments on x/hush Implementation 0 - Informational Reported
Miscellaneous findings on CW contracts mplementation 0 - Informational Resolved

Table 2: Identified Security Findings

Informal Systems © 2026 33

infor

SYS

zQ)
»—

=
m

Zenrock Q1 2026 Security AuditReport

Unshield recipient address not cryptographically
bound to ZK proof

Severity Critical Exploitability High Status Resolved

Type Design Impact High

Involved artifacts

+ zrchain/contracts/miden-circuits/hush.masm

Description

The protocol fails to cryptographically bind the recipient address (Solana destination) to the ZK proof
for unshield operations. The circuit's outputs commitment includes the nullifiers, commitments, amounts,
and fees, but sets recipient commitment = zeros for unshields (code ref). The recipient address is
never included in the cryptographic proof: it's only validated for base58 format after proof verification. This
allows anyone who obtains a valid proof to redirect the unshielded funds to an arbitrary Solana address by
constructing a new transaction with the same proof but a different recipient address.

Problem scenarios

- Mempool front-running: Alice broadcasts an unshield transaction with her proof and Solana address.
Bob monitors the mempool, extracts the proof bytes, and submits his own transaction with the same
proof but his Solana address, using higher gas to front-run Alice. The proof verifies successfully (all
cryptographically-bound fields match), and funds are sent to Bob’s address instead.

 Proof interception: Alice generates a proof on a compromised client or transmits it over an insecure
channel. An attacker intercepts the serialized proof before Alice broadcasts the transaction. The attacker
constructs their own MsgUnshield with the stolen proof, their own Cosmos signing key, and their own
Solana recipient address. The chain accepts this transaction since the proofis mathematically valid and
the recipient address is unconstrained.

Recommendation

Include the recipient address in the circuit's outputs commitment by hashing it into the commitment
structure. The circuit should accept the recipient address (or its hash) as part of the public inputs and
include itin the outputs commitment calculation. This ensures that any modification to the recipient address
invalidates the proof. This requires circuit changes to accept and validate the recipient binding, and client
changes to include the recipient address when generating proofs.

Resolution
The development team has addressed this finding in PR #8309.

Informal Systems © 2026 34

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L175
https://github.com/zenrocklabs/zenrock/pull/839

infor

SYS

Zenrock Q1 2026 Security AuditReport

zQ
» —_—

=
m

Note secret and randomness not cryptographically
bound to spending key

Severity Critical Exploitability High Status Resolved

Type Design Impact High

Involved artifacts

+ zrchain/contracts/miden-circuits/hush.masm

Description

The circuit in hush.masm does not cryptographically bind note secret and randomness values to the
spending key, allowing complete bypass of double-spend protection. The circuit derives nullifier key
from spending keybutloads all note secret and randomness values directly from the advice stack without
verification (code ref).

- The circuit derives nullifier key = hash(spending key || NULLIFIER KEY DOMAIN) (code ref)

- Nullifiers are computed as nullifier = hash(nullifier key, commitment) (code ref)

- Commitments depend on note secret and randomness. However, note secret and randomness values
are loaded via adv_push.4 for balance note (code ref) and incoming notes (code ref) with no verification
that they were derived from the same spending key.

An attacker can use the same commitment with multiple different spending keys to generate unique nullifiers,
spending the same funds multiple times. Since the chain only tracks nullifiers (not commitments), each
spend appears valid.

Problem scenarios

Double-spend balance note

Prerequisites:
- Attacker controls a valid balance note with commitment C and amount A.
Attack steps:

1. Create spending key spending key 1 — derive nullifier key 1 — generate
nullifier 1 = hash(hash(nullifier key 1, C).

2. Submit transaction, spend the funds.

3. Create another spending key spending key 2 — derive nullifier key 2 — generate
nullifier 2 = hash(hash(nullifier key 2, C).

4. Submit second transaction with the same commitment C but different nullifier.

5. Chain accepts both transactions because nullifier 1 # nullifier 2.

Informal Systems © 2026 35

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L361-L362
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L184-L191
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L198-L206
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L361-L362
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L432-L433

informa

SYSTEMS

Zenrock Q1 2026 Security AuditReport

Impact Attacker spends the same balance note twice (or more), creating unbacked tokens.

Double-spend of stealth transfer incoming notes

Prerequisites:

- Legitimate recipient receives a stealth transfer (commitment Cis public on-chain)
- Recipient scans the transfer and learns the pre-image: note secret, randomness, amount, asset, seaq.

Attack steps:

1. Attacker (who knows the pre-image) generates spending key 1 — derives nullifier key 1 — com-
putes nullifier 1 = hash(nullifier key 1, C).

2. Attacker creates a valid proof with the known pre-image (note secret, randomness, amount, asset, seq)
and Merkle path.

3. Chain accepts the proof and marks nullifier 1as spent

4. Attacker generates spending key 2 — derives nullifier key 2 — computes
nullifier 2 = hash(nullifier_key 2, C).

b. Attacker creates another proof for the same commitment C using the same pre-image but different
spending key.

6. Chain accepts because nullifier 2is differentfrom nullifier 1

7. Repeat with spending key 3, spending key 4, ... unlimited times

Impact: Legitimate recipient can double-spend their own incoming notes unlimited times

Recommendation

The circuit must enforce that all note secret (and ideally also randomness) values are cryptographically
derived from the spending keyrather than accepting them as arbitrary advice inputs. For balance notes and
new balance notes, the circuit should derive note secret (and randomness if possible) internally instead of
loading from advice. For incoming notes from stealth transfers, the protocol might require a redesign: for
example, the sender could derive the note secret (and randomness if possible) using the ECDH shared
secret and the recipient spending key.

Resolution
The development team has addressed this finding in PR #846.

Informal Systems © 2026 36

https://github.com/zenrocklabs/zenrock/pull/846

infor

SYS

zQ)
»—

=
m

Zenrock Q1 2026 Security AuditReport

Cross-asset theft vulnerability

Severity Critical Exploitability High Status Resolved

Type Design Impact High

Involved artifacts

- zrchain/x/hush/keeper/merkle.go
- zrchain/x/hush/keeper/msg_server.go

Description

The protocol’s circuit architecture contains a security vulnerability that allows an attacker to unshield tokens
as a different asset type than originally shielded. This enables cross-asset theft attacks where one asset's
vault can be drained using a proof generated for a completely different asset.

The root cause is that the asset type is neither verified either in the circuit or the Unshield message handler.
Root causes:

1. Asset not bound to proof: The asset type was included in V6's public inputs but was dropped in V7
(likely due to the 8-element stack limit). The msg.Asset field is only used after proof verification completes,
meaning the verifier never checks which asset the proof was actually generated for.

2. Global supply tracking: The TotalShielded supply counter is tracked globally across all assets,
not per-asset. This means a valid unshield of “100 units” passes the supply check regardless of which
asset those units belong to—allowing an attacker to drain any vault as long as the total global supplyis
sufficient.

Combined, these issues allow an attacker to generate a proof for Asset Abut claim the withdrawal as Asset
B, with proof verification succeeding because the verifier is asset-agnostic.

Problem scenarios

Given two vaults containing Asset A (e.g., jitoSOL) and Asset B (e.g., zenBTC), an attacker can achieve
cross-asset theft through the following steps:

1. Shield tokens of Asset A:

- The attacker shields 100 jitoSOL, creating a commitment

C = hash(note secret, [100, 0, 0, assetAl]).

2. Generate a valid ZK proof for Asset A:

- Ownership of the commitmentin the Merkle tree

- Correct balance conservation (balance — new_balance + amount + fee)

- The circuit uses the private input asset=A internally to match the commitment
3. Submit Unshield with msg.Asset =B:

* msg.Asset =zenBTC «— Exploits vulnerability

- msg.Amount =100 «— Matches the proof

Informal Systems © 2026 37

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go#L450-L501
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L202-L209

infor

SYS

zQ
» —_—

=
m

Zenrock Q1 2026 Security AuditReport

- msg.RecipientAddress = attackerWallet
- msg.ZkProof = validProofForAssetA
4. Proof verification succeeds:
-+ ComputeOutputsCommitmentV7 () hashes the message commitments withoutincluding the asset
- The circuit's internal hash matches the on-chain computed hash
- msg.Assetis only used after verification for chain routing, not validation
+ UnshieldRequest is created with both Asset=zenBTC and Caip2ChainId mapping to zenBTC and not
jtoSOL
5. Global supply check passes:
* TotalShielded >= msg.Amount + msg.Fee checks against the total shielded (cross-assets) counter
- The system doesn’t verify that Asset B specifically has sufficient shielded funds
6. ABCI routes to wrong vault:

1. The UnshieldRequestis created with Asset=zenBTC thus is picked up by the ABCI handler

- The ABCI handler looks up zenBTC’s Solana program and transfers 100 zenBTC from the zenBTC vault
to the attacker

Result: The attacker receives 100 zenBTC (from another user’s deposit) while their jtoSOL commitmentis
nullified. The jitoSOL vaultretains its 100 tokens (orphaned), and the zenBTC vaultis drained.

Recommendation

- Add asset to outputs commitment: Include msg.Asset in ComputeOutputsCommitmentV7() so the
proofis cryptographically bound to a specific asset. Requires circuit and client library updates.

- Per-asset supply tracking Replace: global TotalShielded with per-asset counters
(map[ShieldAsset]*AssetSupply). Prevents cross-asset balance exploitation even if other checks fail.

Resolution
The development team has addressed this finding in PR #846.

Informal Systems © 2026 38

https://github.com/zenrocklabs/zenrock/pull/846

informal
SYSTEMS
Zenrock Q1 2026 Security AuditReport
Circumventing fees
Severity Critical Exploitability High Status Resolved
Type Design Impact High

Involved artifacts

- zenrock/zrchain/x/hush/keeper/msg _server.go

Description

There is no guarantee that fees are paid when a user submits a shielded transfer due to missing logic and
constraints in ShieldedTransfer.

Problem scenarios

A user can simply skip from providing a FeeCommitment. As a result, hasFeeCommitment is not set and as
aresult the fee-voucher-related code is not even called. Even worse, even if a FeeCommitment is provided,
there is no check that this commitment can be spent by the fee collector in any way, so the created fee
voucher remains unspendable. Or the user could just set a FeeCommitment in such a way as to get the
fees back.

Recommendation

The solution presented PR #846 seems to be going towards the right approach. Justupdate fee stats during
shield transfers and then based on those stats, allow governance to claim those protocol fees.

Resolution

The development team addressed this finding in commit 83d5620.

Informal Systems © 2026 39

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L488
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L573
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L573
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L714-L730
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L720
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L720
https://github.com/zenrocklabs/zenrock/pull/846
https://github.com/zenrocklabs/zenrock/commit/83d5620e879bffaa6338b78d8e1f43a345926f65

infor

SYS

zQ)
»—

=
m

Zenrock Q1 2026 Security AuditReport

Reusing balance nullifier

Severity Critical Exploitability High Status Resolved

Type Implementation Impact High

Involved artifacts

- zenrock/zrchain/x/hush/keeper/msg _server.go

Description

There is no check on whether a nullifier is used both as a balance and an incoming nullifier.

Problem scenarios

User submits a MsgUnshieldor a MsgShieldedTransfer message with a balance nullifier Band includes this
exact same nullifier Bin the incoming nullifiers. Although both Unshield and ShieldedTransfer check for
duplicate incoming nullifiers, there is no check that a balance nullifier is not reused as an incoming nullifier.
As a result, a user can shield 1 token, submit an MsgUnshield for that token and reuse the balance nullifier
in the incoming nullifier, ending up getting 2 tokens back (i.e., one from the balance and one due to the
incoming nullifier). Note that this is possible because the balance nullifier is unspent at the beginning of the
IsNullifierSpent check.

Recommendation

PR #839 already added a check that the balance nullifier does notappear in the incoming nullifiers. But what
mightbe even better is toimmediately mark a nullifier (MarkNullifierSpent) after seeing thatitis not spent
(i.e., IsNullifierSpent). Because thereis noreason to only mark the nullifier much later on because in any
case the Unshield and MsgUnshield operate on a cached context so if the operation fails, the markings will
be reversed.

Resolution
The development team has addressed this finding in PR #8309.

Informal Systems © 2026 40

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L98
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L535
https://github.com/zenrocklabs/zenrock/pull/839
https://github.com/zenrocklabs/zenrock/pull/839

infor

SYS

Zenrock Q1 2026 Security AuditReport

zQ)
)

=
m

Hardcoded note sequence limit

Severity Critical Exploitability High Status Resolved

Type Implementation Impact High

Involved artifacts

- zrchain/clients/hush-wasm/src/lib.rs

Description
Usesonly [0..1000) range to find balance note.

Problem scenarios

If balance noteis created with a higher sequence, it's notrecovered.

Recommendation

Use a configurable or guessed sequence set as input to iterate over.

Resolution
The development team has addressed this finding in PR #846.

Informal Systems © 2026 4

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3084
https://github.com/zenrocklabs/zenrock/pull/846

infor

SYS

Zenrock Q1 2026 Security AuditReport

zQ)
»—

=
m

Integer overflow in balance accumulation
Severity High Exploitability Medium Status Resolved

Type Implementation Impact High

Involved artifacts

- zrchain/contracts/miden-circuits/hush.masm

Description

The circuit accumulates input and output amounts through multiple field addition operations without
overflow detection. Since Miden VM uses Goldilocks field arithmetic (modulus p = 2764 - 2732 + 1), when
accumulated values exceed this modulus, they automatically wrap around via modular reduction. This
wraparound breaks the conservation of value invariant, allowing attackers to craft transactions where the
balance equation total input == total output passes despite having vastly different actual amounts.

The vulnerable accumulation operations occur at:

- Accumulate balance note amountinto total input (code ref).

+ Accumulate incoming note amounts into total input (up to 24 notes) (code ref).

- Accumulate new balance amountinto total output (mem_load.68 mem_|load.34 add mem_store.34).
- Add recipient amount to total output (code ref).

- Add fee to total output (code ref).

And then the balance is verified (code ref).

Neither the circuit nor hush-wasm validate that individual amounts or their sum remain below the field
modulus. Amounts are pushed to the advice tape without sanitization at lines, and the circuit performs no
bounds checking before accumulation.

Problem scenarios

When a user accumulates multiple large shielded transfers over time the sum of their balance note and
incoming notes can legitimately exceed the Goldilocks field modulus during normal protocol usage. Since
the circuit performs field additions without overflow detection, this sum wraps around modulo p to a much
smaller value. The balance verification then compares this wrapped input total against the output total, which
the attacker can craft to match the wrapped value rather than the true value. This allows transactions where
the actual inputs far exceed the outputs (causing token loss) or where outputs exceed inputs (creating
unbacked tokens), yet the circuit's balance check passes because both sides wrap to the same incorrect
value.

Recommendation

- Input sanitization in hush-wasm Before pushing amounts to the advice tape, apply to field safe()
function to reduce any values >= GOLDILOCKS MODULUS. Additionally, validate that each individual amount

Informal Systems © 2026 42

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L369
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L438
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L512
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L598
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L609
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L612

informa

SYSTEMS

Zenrock Q1 2026 Security AuditReport

(balance, incoming notes, new balance, recipient, fee) does not exceed areasonable maximum to ensure
even with 24 incoming notes plus balance, the sum cannot overflow. Also perform pre-flight validation by
computing total inputs and total outputs and rejecting if either sum would exceed GOLDILOCKS MODULUS.

- Circuit-level bounds enforcement: At each adv push.1 operation that loads an amount add an
assertion to verify the loaded value is within the safe maximum (e.g., <= 2762). This creates a hard
constraint that malicious clients cannot bypass and guarantee that accumulation cannot overflow (i.e.,
exceed GOLDILOCKS MODULUS) regardless of how amounts are combined.

Resolution

The development team has implemented felt from u64 and introduced checked addition across
hush-wasmin PR #903. Additionallyin PR #913 developmentteam introduced validation for individual amount
bounds < 2759 and sum bounds (total input and total output) to be < GOLDILOCKS MODULUS (check
added both in hush-wasmandin hush.masm).

Informal Systems © 2026 43

https://github.com/zenrocklabs/zenrock/pull/903
https://github.com/zenrocklabs/zenrock/pull/913

infor

SYS

Zenrock Q1 2026 Security AuditReport

zQ)
»—

=
m

Unsanitized u64 as field element

Severity High Exploitability Medium Status Resolved

Type Implementation Impact High

Involved artifacts

- zrchain/clients/hush-wasm/src/lib.rs (coderef1, code ref 2, code ref 3, etc)
+ zrchain/contracts/miden-merkle/src/contract.rs (code ref)

Description
u64is directly as field elements without validating they are less than GOLDILOCKS MODULOUS.

Problem scenarios

A high value u64 maybe equivalent to low value u64 in the field operation, resulting attack vectors.

Recommendation
Validate the balances to be less then GOLDILOCKS MODULUS.

Resolution
The development team addressed this finding in PR #851.

Informal Systems © 2026 44

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3661-L3664
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3741-L3742
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L300
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L36
https://github.com/zenrocklabs/zenrock/pull/851

infor

SYS

Zenrock Q1 2026 Security AuditReport

zQ
» —_—

-
m

Missing shared secret validation

Severity High Exploitability Medium Status Resolved

Type Implementation Impact High

Involved artifacts

- zrchain/clients/hush-wasm/src/lib.rs

Description

The shared secret generated with ECDH should be rejected ifit's all-zeros to avoid encrypted values being
decrypted by other keys.

Problem scenarios

If the shared secret is not validated and is all-zeros, values encrypted with that shared secret can be
decrypted by other parties.

#[test]

fn x25519 all zero shared secret with zero public key() {
use x25519 dalek::{PublicKey, StaticSecret};

1

2

3

4

5 let amount = 123456789u64;

6

7 // Generate random sender randomness for nonce derivation
8 let mut sender randomness = [0Qu8; 12];

9

getrandom: :getrandom(&mut sender randomness).map err(|e| e.to string()).unwrap();

11 let mut nonce input = Vec::new();

12 nonce input.extend from slice(&sender randomness);

13 nonce input.extend from slice(ENCRYPTION NONCE DOMAIN);

14 let nonce hash = rpo_hash internal(&nonce input).unwrap();
15 let mut amount nonce = [Qu8; 12];

16 amount_nonce.copy from slice(&nonce hash[..12]);

18 // Two different private keys for testing
19 let my secret = StaticSecret::from([42u8; 32]);

20 let my secret2 = StaticSecret::from([51u8; 32]);

22 // Attacker-provided peer public key = all zeros (a small-order point encoding).
23 let their pub = PublicKey::from([Qu8; 32]);

25 let shared = my secret.diffie hellman(&their pub);

Informal Systems © 2026 45

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs

iInformal
S MS

SYSTE
Zenrock Q1 2026 Security AuditReport
26 let shared2 = my secret2.diffie hellman(&their pub);
27
28 assert eq!(shared.as bytes(), &[0u8; 32], "hared secret should be all-zero");
29 assert eq!(shared.as bytes(), &[0Qu8; 32], "shared secret should be all-zero");
30
31 let derived key 1 = derive amount key internal(shared.as bytes()).unwrap();
32 let derived key 2 = derive amount key internal(shared2.as bytes()).unwrap();
33
34 assert eq!(derived key 1, derived key 2, "amount keys should match for same all-
zero shared secret");
35
36 // Encrypt with derived key 1
37 let encrypted amount = encrypt amount internal(&derived key 1, amount,
&amount _nonce) .unwrap();
38 // Decrypt with derived key 2
39 let decrypted amount = decrypt amount internal(&derived key 2,
encrypted amount.as slice()).unwrap();
40
41 assert eq! (amount, decrypted amount, "decrypted amount should match original");
42

Recommendation

Add validation of shared secrets shared secret != [0u8; 32] (e.g., here).

Resoultion
The development team has addressed this finding in PR #8609.

Informal Systems © 2026 46

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L1711C9-L1712
https://github.com/zenrocklabs/zenrock/pull/869

infor

SYS

Zenrock Q1 2026 Security AuditReport

=
m

zQ)
»—

Stealth recovery mismatch
Severity High Exploitability Medium Status Resolved

Type Implementation Impact High

Involved artifacts

- zrchain/clients/hush-wasm/src/lib.rs

Description

Stealth transfer creation builds note secret (code ref) and randomness (code ref) from the shared secret
with a fixed label. Recovery builds them from shared secret and leaf index (code ref 1, code ref 2). So
the recovery path makes different secrets than what the transfer used. The commitment check fails and the
note gets missed.

Problem scenarios

Alice sends a stealth transfer to Bob. Then Bob runs recovery later. But the note doesn’t show up.

Recommendation

Use consistent derivation rule for note secret and randomness.

Resolution
The development team has addressed this finding in PR #903.

Informal Systems © 2026 47

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L1714-L1721
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L1723-L1727
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3143
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3151
https://github.com/zenrocklabs/zenrock/pull/903

infor

SYS

Zenrock Q1 2026 Security AuditReport

zQ
» —_—

=
m

Missing message validation in x/hush handlers

Severity High Exploitability High Status Resolved

Type Implementation Impact Medium

Involved artifacts

- zrchain/x/hush/keeper/msg server.go

Description

The MsgUnshield and MsgShieldedTransfer handlers do not validate the size of
EncryptedNewBalanceIndex and EncryptedRecipientIndex fields. While other encrypted fields like
EncryptedNewBalanceAmount are validated to be exactly 36 bytes, these index fields acceptarbitrary-length
byte arrays that get stored permanently in chain state.

Problem scenarios

An attacker submits a valid MsgUnshield transaction with amulti-megabyte EncryptedNewBalanceIndexfield
filled with garbage data. The transaction passes all validation checks (ZK proof, nullifiers, commitments)
and succeeds. The garbage data is stored in both the UnshieldRequest and Voucher records, bloating
validator state. While bounded by Cosmos SDK’s "5MB transaction limit and gas costs, repeated attacks
could accumulate gigabytes of unnecessary storage.

Recommendation

Add length validation for the missing fields following the Cosmos SDK ValidateBasic pattern, where
stateless message validation should reject malformed inputs before any state access occurs:

1 // In Unshield and ShieldedTransfer: " Go
if len(msg.EncryptedNewBalanceIndex) > 0 && len(msg.EncryptedNewBalanceIndex) != 36 {

return nil, errorsmod.Wrap(sdkerrors.ErrInvalidRequest, "encrypted new balance index
must be 36 bytes")

N

// Additionally in ShieldedTransfer:
if len(msg.EncryptedRecipientIndex) > 0 && len(msg.EncryptedRecipientIndex) != 36 {

return nil, errorsmod.Wrap(sdkerrors.ErrInvalidRequest, "encrypted recipient index
must be 36 bytes")

Resolution

The development team addressed this finding in commit 83d5620.

Informal Systems © 2026 48

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L45-L343
https://github.com/zenrocklabs/zenrock/commit/83d5620e879bffaa6338b78d8e1f43a345926f65

infor

SYS

Zenrock Q1 2026 Security AuditReport

zQ
» —_—

=
m

Cross-chain linkability

Severity Medium Exploitability Medium Status Resolved

Type Design Impact Medium

Involved artifacts

+ zrchain/clients/hush-wasm/src/lib.rs
+ zrchain/contracts/miden-circuits/hush.masm

Description

Right now the key derivations (spending key — note secret / randomness |/ nullifier key) and the
commitmenthash don’tmixin a CHAIN ID. Thatmeans the same signature and inputs can produce the same
keys and commitments on multiple networks. So a wallet can accidentally reuse secrets across chains, and
the commitments can be linked across networks.

Problem scenarios

- You use the same wallet signature on mainnet + testnet, and the spending key / nullifier key end up
identical on both.

- Anote with the same amount/assetfrandomness can produce the same commitment on different networks,
SO someone can match it across chains.

- An auditor watching multiple networks can link activity just by matching commitments or nullifiers.

Recommendation

Include CHAIN IDin key managementand the commitmentinput

+ Mix CHAIN ID into derive spending key internal (or into the domain separators) so keys are chain-
specific.

- Carry that through the rest of the hierarchy (note secret, randomness, nullifier key).

+ Add CHAIN IDinto the commitment formulain both Rustand the MASM circuit so commitments are chain-
specific too.

Resolution

The development team has addressed this finding in commit 75f6e80.

Informal Systems © 2026 49

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm
https://github.com/zenrocklabs/zenrock/commit/75f6e8036eb0a0bbbd483c1ece2bab39b46bc177

infor

SYS

Zenrock Q1 2026 Security AuditReport

zQ)
»—

=
m

Mempool proof replay attack

Severity Medium Exploitability Low Status Resolved

Type Implementation Impact High

Involved artifacts

- zrchain/x/hush/keeper/merkle.go
- zrchain/x/hush/keeper/msg_server.go

Description

The x/hushmodule’s ShieldedTransfer function is vulnerable to a mempool proofreplay attack that allows
an attacker to copy a valid transaction from the mempool, modify the msg.Asset and msg.Creator fields,
and front-run the original sender.

Root causes:

1. Asset not bound to proof: The msg.Asset field is notincluded in V7’s outputs commitment. The only
value that changes with assetis the fee parameter, meaning proofs are interchangeable between assets
if their ShieldedTransferFee values are identical.

2. Proof validation is asset-agnostic: The ZK proof verifies that commitments are correctly formed and
conservation holds, butdoesn’t validate which asset those commitments belong to—that check happens
implicitly via fee matching.

Currentprotection (weak): The attack only succeeds when two assets have the same ShieldedTransferFee.
Current fee differences (jtoSOL: 10000000, zenBTC: 10000) prevent exploitation, but this is security-by-
coincidence, not security-by-design.

Problem scenarios

Given two assets with identical ShieldedTransferFee values, an attacker can hijack a shielded transfer:

1. User A submits a MsgShieldedTransfer to transfer jtoSOL within the shielded pool:
- msg.Creator="“zenltuser...”
- msg.Asset = jitoSOL
» msg.ZkProof =P (valid proof)
- msg.RecipientCommitment, msg.NewBalanceCommitment, etc.
2. Attacker observes mempool and front-runs user A’s transaction with:
- msg.Creator ="zen1attacker...” «— changed to attacker’s address
- msg.Asset =zenBTC «— changed
- msg.ZkProof =P and all other fields copied from the original
3. Proof verification succeeds:
- ComputeOutputsCommitmentV7 () computes the same hash (asset notincluded)
- The fee value matches (by assumption)
- The circuitinternally verified conservation using the original private inputs

Informal Systems © 2026 50

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go#L450-L501
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L202-L209

informa

SYSTEMS

Zenrock Q1 2026 Security AuditReport

- Neither msg.Creatornor msg.Asset affect the hash
4. Attacker’s transaction succeeds and corrupts the states:
- Nullifiers are marked as spent
- Vouchers are created with wrong asset tags (zenBTC instead of jtoSOL)
- ShieldedTransferrecord stored with the attacker as msg.Creator
5. User A’s transaction is rejected:
- “nullifier already spent” error
- User A cannotretry (nullifiers are consumed)

Result:

+ User A’s transfer fails (DoS)

- Vouchers are tagged as zenBTC instead of jitoSOL (corruption)

- Recipient voucher routes to wrong Solana program atunshield time

- No funds are stolen (commitments remain cryptographically bound to original owners)

Recommendation

- Add asset to outputs commitment Include msg.Asset in the metadata word. Prevents cross-asset
proof reuse regardless of fee values.

- Enforce unique fees per asset: Governance constraint preventing identical ShieldedTransferFee
values.

Resolution
The development team has addressed this finding in PR #846.

Informal Systems © 2026 51

https://github.com/zenrocklabs/zenrock/pull/846

infor

SYS

Zenrock Q1 2026 Security AuditReport

zQ
» —_—

=
m

Missing tree depth validation makes the contract

unusable
Severity Medium Exploitability Low Status Resolved
Type Implementation Impact High

Involved artifacts

« zrchain/contracts/miden-merkle/src/contract.rs

Description

The instantiate() function in the miden-merkle contract accepts a tree depth parameter from
InstantiateMsg without validating its upper bound.

The vulnerability manifests in two locations. First, in the max_tree capacity () helper function (code ref), the
expression 1u64 << depth overflows when depth >= 64. Second, in the node position() function (code
ref), the expression ((level as u64) << depth) + index can overflow when depth values approach 64.

Since the tree depth is set during initialization and cannot be changed afterward, an invalid depth value
permanently breaks the contractinstance, requiring redeployment with correct parameters.

These overflows prevent the contract from storing any commitments, making it basically unusable.

Test

This is a test showcasing this issue. We instantiate the contract with a three depth of 64. After that, we try
to add a commitment and the contract panics with: “attempt to shift left with overflow”.

#[test]

#[should panic(expected = "attempt to shift left with overflow")]
fn test instantiate invalid tree depth() {

let mut deps = mock dependencies();

1
2
3
4
5 let msg = InstantiateMsg { tree depth: 64, history size: None };
6 let info = mock info("creator", &[1);

7 let res = instantiate(deps.as mut(), mock env(), info, msg).unwrap();
8 assert eq!(res.attributes.len(), 3);

9

assert!(res.attributes.iter().any(|a| a.key == "tree depth" && a.value == "64"));

11 // Now we try to add a commitment

12 let commitment = vec![1lu8; 32];

13 let sudo msg = SudoMsg::AddCommitment { commitment };
14 sudo(deps.as mut(), mock env(), sudo _msg).unwrap();
15 }

Informal Systems © 2026 52

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L91-L124
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L17-L20
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L317-L320
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L317-L320

infor

SYS

zQ)
»—

=
m

Zenrock Q1 2026 Security AuditReport

Problem scenarios

The deployer of the contract mistakenly sets the tree depth parameter to be = 64. The contractis instan-
tiated correctly, but on the first sudo add commitment() call, the overflow occurs, making it impossible to
add any commitments to the tree.

Recommendation

Add explicit validation in the instantiate() function to reject tree depths that could cause arithmetic
overflow. The maximum safe depth for a u64-based tree is 63, as 1u64 << 63 produces a valid result while
1u64 << 64 overflows.

Alternatively, if the tree depth is predetermined for the deployment environment, consider defining it as a
compile-time constantrather than acceptingitas aruntime parameter, eliminating the validation requirement
entirely.

Resolution
The development team has addressed this finding in PR #8609.

Informal Systems © 2026 53

https://github.com/zenrocklabs/zenrock/pull/869

infor

SYS

zQ)
»—

=
m

Zenrock Q1 2026 Security AuditReport

Lack of confirmation during admin updates

Severity Medium Exploitability Low Status Resolved

Type Implementation Impact High

Involved artifacts

- zrchain/contracts/miden-merkle/src/contract.rs

Description

The admin update process implemented in the execute update admin() function does not follow the best
practices. The process is implemented in a single step, where the admin only overwrites its address by
adding the new admin.

As a result, itis possible to assign control of the contract to an incorrect address. Once such an update
occurs, the contract’'s administrative functions become permanently inaccessible, effectively locking the
contract's configuration and administrator capabilities.

Problem scenarios

An admin unintentionally sets another address as the admin without that entity’'s knowledge or ability to
interact. The system remains operational, but future administrative actions are impossible.

Recommendation

To mitigate the risk of administrative lockout and to ensure that admin updates are both valid and explicitly
acknowledged, the contract should use the two-step ownership transfer pattern provided by the cw-ownable
library.

The library enforces a proposal — acceptance workflow before ownership changes are finalized. Itensures
that no contract can become ownerless or accidentally locked due to invalid admin updates.

Resolution
The development team has addressed this finding in PR #846.

Informal Systems © 2026 54

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L185-L210
https://crates.io/crates/cw-ownable
https://github.com/zenrocklabs/zenrock/pull/846

infor

SYS

zQ
» —_—

-
m

Zenrock Q1 2026 Security AuditReport

Nullifier key derivation mismatch in account recov-
ery
Severity Medium Exploitability High Status Resolved

Type Implementation Impact Low

Involved artifacts

+ zrchain/clients/hush-wasm/src/lib.rs

Description

The recover account state function uses derive nullifier key internal (code ref) to derive the nulli-
fier key, while all other functions like derive voucher v2(coderef), create balance note internal (code
ref), and derive full viewing key(code ref) use derive nullifier key circuit internal.

These two functions use different hashing approaches:

- derive nullifier key internal (code ref): concatenates spending_key with domain bytes and uses
Rpo256: :hash _elements

+ derive nullifier key circuit internal: structuresinputstomatch the circuit’'s hmergeinstruction then
calls vm_hmerge which uses Rpo256: :merge with the exact state layout that the VM uses internally

They produce completely different outputs for the same spending_key.

Test

1 #[test]
2 fn test nullifier key derivation mismatch() {

3 let spending key = [0x41u8; 32];

4

5 let result circuit = derive nullifier key circuit internal(&spending key).unwrap();
6 let result_internal = derive nullifier key internal(&spending key).unwrap();

7

8 println!("Circuit: {}", hex::encode(&result circuit));

9 println! ("Internal: {}", hex::encode(&result internal));

10

11 // This assertion will FAIL, demonstrating the bug

12 assert _eq!/(

13 result circuit, result internal,

14 "Circuit and internal derivation outputs are not the same!"

15)

16 }

Informal Systems © 2026 55

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3060-L3061
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L797
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L490
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L490
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L689
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L327-L341

infor

SYS

Zenrock Q1 2026 Security AuditReport

zQ)
»—

=
m

Test fails with output:

1 Circuit: 943645f1lbbd5dcd2bb30e78cd972326dc3e5ab3277634cf0cb045715343ddf12
2 Internal: 7da2lcb2le6bd68e7bc80d9ff244413e02cb23ce3cd696c07f45c05f91ce2del

Problem scenarios

When a user calls recover account state to scan their vouchers and determine which are spent:

1. The function derives the wrong nullifier_key using derive nullifier key internal

2. For each voucher, it computes nullifiers using the wrong key

3. ltcompares against on-chain spent nullifiers (which were computed using the circuit-compatible deriva-
tion)

4. No matches are found because the nullifiers are completely different

5. All vouchers appear unspent, even if they were already spent

Ifthe user attempts to spend a voucher that appears unspentbutis actually spent, the ZK proof generation
will use the correct circuit-compatible derivation, produce the correct nullifier, and the chain will reject the
transaction because that nullifier is already marked as spent.

Recommendation

Replace derive nullifier key internal with derive nullifier key circuit internal in
recover account state. Additionally, consider deprecating orremoving derive nullifier key internal
to prevent future misuse.

Resolution

The development team has addressed this finding in commit 069¢281.

Informal Systems © 2026 56

https://github.com/zenrocklabs/zenrock/commit/069c281ba7d42632aa433ff8c527a62847e2c480

infor

SYS

Zenrock Q1 2026 Security AuditReport

zQ
» —_—

=
m

Erroneous supply stats

Severity Medium Exploitability High Status Resolved

Type Implementation Impact Low

Involved artifacts

- zenrock/zrchain/x/validation/keeper/abci hush.go
- zenrock/zrchain/x/hush/keeper/keeper.go

Description

Ifa user (by accident or maliciously) performs two shielding events with the exact same commitmentit can
lead to erroneous accounting statistics and a lingering voucher that the user cannot use.

Problem scenarios

Specifically, a can userinitiate two shielding events with the exact same commitmentthatare both processed
in processShieldEvents. During the first processing of the shield event, a voucher would be created for this
commitment. Then, when the second shield event is being processed (this can happen because it has a
different shieldEvent.TxIdand shieldEvent.LogIndex than the first shield event), italso creates a voucher
for the exact same commitment and furthermore overwrite CommitmentToVoucherStore with the nextID of
this commitment. Now, when the user spends one voucher, the nullifier is marked as spent and the user
cannot use the other voucher.

This leads to:

+ Accounting of supply is wrong (due to updateSupply being true).

- Due to the overwrite of CommitmentToVoucherStore the user is not able to generate a proof to retrieve
funds from the first voucher. This is good because it does not allow for double spending but the UX might
be bad in the sense that the user sees a voucher that they cannot use.

Recommendation

Introduce a check before the AddCommitment call and in case the commitment already exists (e.g., by
checking CommitmentToVoucherStore) return an error.

Resolution
The development team has addressed this finding in PR #8609.

Informal Systems © 2026 57

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L24
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L391
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L24
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L44-L68
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L44-L68
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L26
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L26
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L26
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L26
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L432
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L444
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L391
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L391
https://github.com/zenrocklabs/zenrock/pull/869

infor

SYS

Zenrock Q1 2026 Security AuditReport

zQ)
»—

=
m

Unbounded Merkle Depth (DoS vector)

Severity Medium Exploitability Medium Status Resolved

Type Implementation Impact Medium

Involved artifacts

- zrchain/clients/hush-wasm/src/lib.rs

Description
depth (whichis siblings.len() / 32)is never checked for bounds (code ref).

Problem scenarios

An attacker can pass a siblings array of arbitrary size (e.g., T0MB = 327,680 siblings = depth 327,680),
causing the loop to execute millions of imes with expensive hash operations per iteration.

Recommendation

1 const MAX_MERKLE DEPTH: usize = 64; // Reasonable upper bound
2 let depth = siblings.len() / 32;

3 if depth > MAX MERKLE DEPTH {

4 return Err(JsValue::from str("Merkle depth exceeds maximum allowed"));

5

Resolution

The development team has addressed this finding in commit 3edd36f.

Informal Systems © 2026 58

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L2841
https://github.com/zenrocklabs/zenrock/commit/3edd36f8216a7d9f431136b3c89ce59283f83461

infor

SYS

Zenrock Q1 2026 Security AuditReport

zQ)
)

=
m

Unbounded JSON string (DoS vector)

Severity Medium Exploitability Medium Status Resolved

Type Implementation Impact Medium

Involved artifacts

- zrchain/clients/hush-wasm/src/lib.rs

Description

The serde json::from strcallsare on &str with unbounded length.

Problem scenarios

An attacker (requires highjacked wallet or RPC endpoint) can submitareally large JSON which is processed
by wasm functions leading to high memory and CPU usage.

Recommendation

Validate lengths of all unbounded input bytes and strings with a reasonable upper bound.

Resolution

The development team has addressed this finding in commit 3edd36f.

Informal Systems © 2026 59

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs
https://github.com/zenrocklabs/zenrock/commit/3edd36f8216a7d9f431136b3c89ce59283f83461

infor

SYS

Zenrock Q1 2026 Security AuditReport

zQ
» —_—

=
m

Missing host-side new balance validation (DoS vec-

tor)
Severity Medium Exploitability Medium Status Resolved
Type Implementation Impact Medium

Involved artifacts

+ zrchain/clients/hush-wasm/src/lib.rs

Description

The generate account proof internal() function accepts new balance amount as a parameter but per-
forms no validation that:

1. new balance amount = old balance + incoming total - recipient amount - fee
2. Amounts don’t overflow
3. Feeis correctly applied

Problem scenarios

While the proof will correctly fail if amounts don’t balance, the Rust host code should validate inputs
before expensive proof computation (71-8 seconds). An attacker (requires browser wallet or RPC endpoint
highjacking) could:

- Submit new _balance amount = u64::MAX (invalid)
- Trigger expensive STARK proof generation (wasting CPU)
+ Proof fails at circuit assertion (but attacker already wasted resources)

Thisis a DoS vector, not an infinite money bug (circuit prevents actual exploit).

Recommendation

1 // Validate amount conservation
2 let incoming sum: u64 = incoming notes.iter().map(|n| n.amount).sum();

3 let old balance = balance note.as ref().map(|n| n.amount).unwrap or(0);

4 let expected new balance = old balance.checked add(incoming sum)

5 .and then(|sum| sum.checked sub(recipient amount))

6 .and then(|sum| sum.checked sub(fee))

7 .0k or("Amount overflow or underflow")?;

8 if new balance amount != expected new balance {

9 return Err("new _balance amount does not match expected value".to string());

10 }

Informal Systems © 2026 60

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3574

info rmal
SYSTEMS
Zenrock Q1 2026 Security AuditReport

Resolution

The development team has addressed this finding in commit 3edd36f.

Informal Systems © 2026 61

https://github.com/zenrocklabs/zenrock/commit/3edd36f8216a7d9f431136b3c89ce59283f83461

infor

SYS

Zenrock Q1 2026 Security AuditReport

=
m

zQ)
»—

Silent recipient string truncation
Severity Medium Exploitability Low Status Resolved

Type Implementation Impact High

Involved artifacts

- zrchain/clients/hush-wasm/src/lib.rs

Description

Only first 32 bytes are copied from recipient bytes.

Problem scenarios

Potential fund loss or transaction errors.

Recommendation

1 if recipient bytes.len() > 32 {
2 return Err(JsValue::from str("Recipient address exceeds 32 bytes"));

3}

Resolution

The development team has addressed this finding in commit 3edd36f.

Informal Systems © 2026 62

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L2903
https://github.com/zenrocklabs/zenrock/commit/3edd36f8216a7d9f431136b3c89ce59283f83461

infor

SYS

zQ)
»—

=
m

Zenrock Q1 2026 Security AuditReport

AddCommitment overwrites

Severity Medium Exploitability High Status Resolved

Type Design Impact Low

Involved artifacts

- zrchain/x/hush/keeper/keeper.go
- zrchain/x/hush/keeper/merkle.go

Description

We can have multiple AddCommitment calls in the same block for a specific height Hand as a result the root
for H will overwrite the previously written root for height H. This means that a user might have to generate
a proof again because their proofis based on an invalid root (i.e., cannot be found in ROOT HISTORY) even
though the user just generated the proof, leading to bad user experience.

Problem scenarios

If we have multiple AddCommitment calls in a block at height H (e.g., multiple MsgShieldedTransfer trans-
actions in the same block), then each of those AddCommitments updates the root for this specific height H,
overwriting the previous entry for height H. This can lead to cases where a user generates a proofbased on
some Merkle root R but when submitting the message with this proof, root R cannotbe found because it has
been overwritten.

Recommendation

Change the key of ROOT HISTORY to notbe block heightbut something globally unique such as the leafindex
as done in PR #8309.

Resolution
The development team has addressed this finding in PR #8309.

Informal Systems © 2026 63

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/state.rs#L31
https://github.com/zenrocklabs/zenrock/pull/839
https://github.com/zenrocklabs/zenrock/pull/839
https://github.com/zenrocklabs/zenrock/pull/869

infor

SYS

Zenrock Q1 2026 Security AuditReport

zQ)
»—

=
m

Missing check for leaf_index

Severity Low Exploitability Medium Status Resolved

Type Implementation Impact Low

Involved artifacts

- zrchain/clients/hush-wasm/src/lib.rs

Description

The leaf indexis notvalidated thatitis smaller than 2 ~ depth (code ref).

Problem scenarios

Invalid leaf index can be used to successfully call the function compute merkle root.

Recommendation
1 if leaf_index >= (1 << depth) { return Err(...); }
Resolution

The development team has addressed this finding in commit 16480dc.

Informal Systems © 2026 64

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L2843
https://github.com/zenrocklabs/zenrock/commit/16480dca37609eebd948cad8c1e8c009dd44b096

infor

SYS

zQ
» —_—

=
m

Zenrock Q1 2026 Security AuditReport

Commitment field ordering inconsistency

Severity Low Exploitability Low Status Resolved

Type Implementation Impact Low

Involved artifacts

- zrchain/contracts/miden-merkle/src/contract.rs

Description

The miden-merkle contract uses incorrect field ordering when computing commitments, resulting in
a mismatch with the circuit and client implementations. In query compute commitment uses order
[0, 0, asset, amount] (code ref)instead of stack order [amount, 0, 0, asset](asdonein hush-wasm's
compute commitment internal(code ref)).

Problem scenarios

When external tools query the miden-merkle contract to verify a commitment computed by hush-wasm, the
hashes will not match.

Recommendation

Fix the implementation of query compute commitment to use stack order instead of log-
ical order. Change from [Word::new([ZERO, ZERO, Felt::new(asset), Felt::new(amount)])] to
[Word: :new([Felt::new(amount), ZERO, ZERO, Felt::new(asset)])] so thatafter reversal before hash-
ing in hash_nodes, the logical orderis [asset, 0, 0, amount].

Additionally, make sure values are converted to safe field elements before calling Felt: :new().

Resolution
The development team has addressed this finding in PR #855.

Informal Systems © 2026 65

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L456
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L300
https://github.com/zenrocklabs/zenrock/pull/855

infor

SYS

zQ)
»—

=
m

Zenrock Q1 2026 Security AuditReport

Duplicate vouchers compute wrong balance

Severity Low Exploitability Medium Status Resolved

Type Implementation Impact Low

Involved artifacts

- zrchain/clients/hush-wasm/src/lib.rs

Description

The function recover account state takes vouchers json from outside and just adds matching notes to
a list without checking for duplicates. When calculating total balance, it sums up all entries including the
duplicates. If someone passes the same voucher 5 times, the balance shows 5x the real amount.

Problem scenarios

Amalicious RPC or frontend could return the same voucher multiple times. User sees a fake inflated balance
and might try to spend money they don’thave. They waste CPU time generating a proof and gas submitting
a tx that the chain will reject anyway.

Could also be used for scams by showing fake “proof” of wealth.

Recommendation

Use HashSet instead of Vec for incoming notes (code ref).

A similar fix should go into generate account proof (code ref).

Resolution

The development team has addressed this finding in commit 16480dc.

Informal Systems © 2026 66

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3163-L3173
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3068
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3549
https://github.com/zenrocklabs/zenrock/commit/16480dca37609eebd948cad8c1e8c009dd44b096

infor

SYS

Zenrock Q1 2026 Security AuditReport

zQ)
»—

=
m

Missing integer overflow check in x’hush module

Severity Informational Exploitability None Status Resolved

Type Implementation Impact None

Involved artifacts

- zrchain/x/validation/keeper/abci hush.go

Description

In the processUnveilBroadcasting function, the TotalShielded supply gets incremented by the shield
events amount without checking for integer overflow.

Problem scenarios

If a new ShieldAsset is added with no economic cap, like Ethereum, repeated large deposits could
accumulate to overflow.

Recommendation

Add integer overflow check in createVoucherInternal:

1 if updateSupply && amount > 0 { s JavaScript

2 supply, err := k.GetSupply(ctx)

3 if err != nil {

4 return 0, err

5 }

6

7 // Check for overflow before addition

8 if amount > math.MaxUint64 - supply.TotalShielded {

9 return 0, fmt.Errorf("supply overflow: adding %d to %d would exceed uint64",
amount, supply.TotalShielded)

10 }

11

12 supply.TotalShielded += amount

13 if err := k.SetSupply(ctx, supply); err != nil {
14 return 0, err

15 }

16

17 // rest of function

Informal Systems © 2026 67

https://github.com/zenrocklabs/zenrock/blob/27539c1b6bf538b821c98abdd767f7d3438f4d00/zrchain/x/validation/keeper/abci_hush.go#L462

info rmal
SYSTEMS
Zenrock Q1 2026 Security AuditReport

Resolution

The development team addressed this finding in commit 30f9ae0.

Informal Systems © 2026 68

https://github.com/zenrocklabs/zenrock/commit/30f9ae03d4cdd73f83224393386905951a34af0f

infor

SYS

zQ)
»—

=
m

Zenrock Q1 2026 Security AuditReport

Note secret derivation inconsistency between bal-
ance notes and vouchers

Severity Informational Exploitability None Status Resolved

Type Implementation Impact None

Involved artifacts

+ zrchain/clients/hush-wasm/src/lib.rs

Description

Balance notes and vouchers use different hashing methods for note secret derivation:

- derive balance note secret internal (balance notes): uses rpo_hash internal
- derive note secret circuit internal (vouchers): uses vm hmerge

Currently the circuit takes note secret as an input and does not verify its derivation from spending key.
However, if the circuit is ever updated to validate note_secret derivation in-circuit, balance notes using
derive balance note secret internal would fail verification because rpo hash produces different out-
puts than vm_hmerge.

Recommendation

Consider using circuit-compatible derivation (vm_hmerge) for all note secret derivations to ensure forward
compatibility ifin-circuit validation is added in the future.

Note

Currently this finding does not pose any threat butit should be keptin mind if “Note secret not cryptograph-
ically bound to spending key’ was patched severity of this finding would increase and require patching.

Resolution

The development team has addressed this finding in commit 069c281.

Informal Systems © 2026 69

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L398
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L2940
https://github.com/zenrocklabs/zenrock/commit/069c281ba7d42632aa433ff8c527a62847e2c480

infor

SYS

Zenrock Q1 2026 Security AuditReport

zQ)
»—

=
m

Duplicate incoming notes not validated

Severity Informational Exploitability None Status Resolved

Type Implementation Impact None

Involved artifacts

+ zrchain/clients/hush-wasm/src/lib.rs
+ zrchain/contracts/miden-circuits/hush.masm

Description

The generate account proof internal function does not validate thatincoming notes are unique before
generating a proof. While the chain-side validation in x/hush for unshields (code ref) and for transfers (code
ref) correctly rejects transactions with duplicate incoming nullifiers using a seenNullifiers map, the client
does not perform this check early. This means users who accidentally include duplicate incoming notes will
waste computational resources generating an expensive STARK proof that will be rejected by the chain.
Additionally, the circuitat hush.masm does not cryptographically enforce nullifier uniqueness, relying entirely
on chain-side validation rather than circuit constraints.

Problem scenarios

A user’s wallet experiences a synchronization bug or database corruption that causes the same incoming
note to appear multiple times in their local state. When attempting to spend their funds, the wallet constructs
a transaction including this note multiple times in the incoming notes json array. The hush-wasm client
proceeds to generate a proof without detecting the duplication, which involves expensive cryptographic
operations (STARK proving for the circuit). The proof generation succeeds because the circuitaccumulates
the duplicate amounts without checking uniqueness. However, when the transaction reaches the chain, the
x/hush message handler detects the duplicate nullifiers and immediately rejects the transaction. The user
has wasted time and computational resources generating a proof that was doomed to fail, and receives a
cryptic error message without understanding what went wrong with their wallet state.

Recommendation

- In generate account proof internal, after parsing the incoming notes array, add early validation to
detect duplicates by checking that all commitment values are unique.

- While the chain already validates uniqueness, the circuit could enforce this cryptographically by adding
pairwise nullifier comparison checks after the incoming notes loop at hush.masm. However, given the chain
already validates this, the cost-benefit radeoff may favor keeping this validation chain-side only.

Resolution

The development team has addressed this finding in commit 16480dc.

Informal Systems © 2026 70

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L98-L115
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L535-L551
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L535-L551
https://github.com/zenrocklabs/zenrock/commit/16480dca37609eebd948cad8c1e8c009dd44b096

informal
SYSTEMS
Zenrock Q1 2026 Security AuditReport
Viewing key lifetime leak
Severity Informational Exploitability None Status Resolved

Type Design Impact None

Involved artifacts

- docs/guides/hush-protocol-overview.md

Description

Ifyou share a viewing key once, the auditor can keep scanning your incoming notes forever. That's basically
a permanent visibility grant, and if their data gets leaked you can be doxxed. There’s also no clean way to
prove if aleak happened.

Problem scenarios

- Auditor keeps old keys and monitors you indefinitely.
- Keyleaks years later — retroactive exposure.
- No easy “proof of leak” or revocation other than moving funds.

Recommendation

Call this outas a privacy tradeoffin the docs. Suggestrotating to a new wallet for a clean break, and consider
short-lived viewing keys or scoped keys (timefamountlimits) if we want better privacy ergonomics.

Resolution

The development team acknowledged this finding and explicitly documented recommendations for secure
usage of the viewing key (ref). Users are informed of the persistence nature of the key, and they may use it
only specifically for compliance and auditing purposes. This design mirrors the well-established approach
used by Zcash and other privacy-preserving systems.

Informal Systems © 2026 il

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/docs/guides/hush-protocol-overview.md#privacy-properties
https://github.com/zenrocklabs/zenrock/blob/c3b02182623638c10a80ba076dd8c143b7beafbb/zrchain/docs/hush-privacy.md?plain=1#L311-L326

infor

SYS

Zenrock Q1 2026 Security AuditReport

zQ
» —_—

=
m

Miscellaneous findings on hush-wasm

Severity Informational Exploitability None Status Reported

Type Implementation Impact None

Involved artifacts

- zrchain/clients/hush-wasm/src/lib.rs

High

- No overflow checks when computing balances (code ref).

- Avoid leaking private info via Err propagation. If possible, use &'static str for error strings.

+ Avoid using unwraps or unwrap ors.

- Careful when using getrandom(code ref). We shouldn’trely on platform specific entropy generation. Better
to rely on hash of spending key (main source of entropy), transaction sequence, CHAIN ID and domain
tags to generate entropy.

Medium

- Careful aboutunbounded data. Validate all inputs forits length. We would suggesttoimplementeverything
in fixed length bytes and have glue code that deals with &[u8] and Vec<u8> for wasm boundary.
+ randlabel is too generic (code ref).
+ There are still some zerorize calls missing.
» We recommend using proper structs with Zeroize0OnDrop auto derivation to automatically zerorize()
calling (ref).
» ZeroizeOnDrop is recommended because of pitfalls like — returning early due to Error propagation
(example) which forgets to call zeroize().
- Check length of deserialised note secret and randomness values for balance note (code ref) and
incoming notes (code ref).

Low

+ Fixall cargo clippy warnings.

- Use let fixed bytes = [u8: CONST SIZE] = value.try into() for fixed length bytes.

- Use proper structs to deserialize JSON data using serde _json::Value.

- Use &stror enums for error types.

- Validate byte size directly on hex string, before hex: : decode to avoid unnecessary decoding.

- Use cfg! (feature = "prover") instead of #[cfg(feature = "prover")] (code ref).

- Move loop-independent code blocks out of loop. For example, this code block doesn’t depend of seqloop
variable.

- Instead of serde_value::Value[KEY].as str() use proper deserializable struct.

- To append a vector with empty/zero values, use Vec::resize with (coderef1, code ref?2).

-+ Careful when using Vec: :with capacity—it doesn’t match in some cases (code ref 1, code ref 2, code
ref 3).

Informal Systems © 2026 72

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3185-L3187
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3254
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3290
https://docs.rs/zeroize/latest/zeroize/#custom-derive-support
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L1559-L1561
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3674-L3679
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3704-L3709
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3006-L3011
https://www.notion.so/ZenRock-Q1-2026-Hush-privacy-protocol-2e5d212b18c3805aadfbecbc0affe4f5?pvs=21
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3700-L3736
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L7250-L7256
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3275
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3288
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3302
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3302

informa

SYSTEMS

Zenrock Q1 2026 Security AuditReport

+ Use as_chunks::<SIZE>() over chunks (SIZE). Careful when discarding remainder (code ref).

+ Add mutation tests.

- Keep code linear. Instead of if let Some(value) = wrapped value {...} ftry to use
let Some(value) = wrapped value else { // other branch }(same of Ok(value) too).

- Modularize the 1ib. rs file according to the usage and importance.

- Public function pub fn rpo hash (code ref) should be calling the private function fn rpo _hash internal
(code ref) instead of duplicating the logic.

+ Function fn derive viewing keypair internal(code ref)is onlyused for tests, it shouldlive in the tests
module.

+ Thiscommentis misleading. It should say: “nullifier_key - 32-byte nullifier key (derived from spending_key,
part of full viewing key)”

Resolution

Security-critical input validation and overflowissues were fixed. Zeroization of fields and secretleaks through
logs are handled.

Informal Systems © 2026 73

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3053-L3056
http://lib.rs
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L546-L564
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L254-L271
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L1535
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L601

infor

SYS

zQ)
)

=
m

Zenrock Q1 2026 Security AuditReport

Miscellaneous findings in hush.masm

Severity Informational Exploitability None Status Resolved

Type Implementation Impact None

Unconstrained asset value

Asset is only validated to be non-zero (code ref). Asset values are used in commitment computation but
never validated against a list of valid assets.

Recommendation: Sanitise asset value (code ref) before inserting in advice tape. Ideally do also range
check in circuit.

Resolution: The development team addressed this recommendation in PR #913.

No validation of incoming_count

Countis loaded (code ref) but never used.
Recommendation: Consider removing itif not needed.

Resolution: The development team addressed this recommendation in PR #869.

Informal Systems © 2026 74

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L328-L334
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3661
https://github.com/zenrocklabs/zenrock/pull/913
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L344-L346
https://github.com/zenrocklabs/zenrock/pull/869

infor

SYS

zQ
» —_—

=
m

Zenrock Q1 2026 Security AuditReport

Miscellaneous comments on x/hush

Severity Informational Exploitability None Status Reported
Type Implementation Impact None

Recommendations

High

- Implementthe Cosmos SDK ValidateBasic to validate the Unshield and ShieldTransfer message fields.

- Use a cached contextin PreBlocker and only write the changes (i.e., writeCaches) at the end to prevent
future-code changes from introducing bugs (e.g., having a successful AddCommitment but then failing to
add the voucher in the store in the processing of shield events).

* Itis not clear why MsgUnshield and MsgShieldedTransfer have both the balance nullifier and the
has balance note fields because justhaving nullifier could point to whether we have a balance note
(e.g., if nullifieris not all zeros). Additionally, if there is no balance note, balanceNullifier is set to
zeros, nevertheless msg.Nullifier that might not be all zeros is passed in UnshieldRequestParams and
ShieldedTransfer that can lead to inconsistencies.

- Regarding migrations, since there is no upcoming migration, we did not audit migration code. However,
looking at the v13 migration itis important to note that this migration does notinteract with the Merkle tree,
potentially leaving unused commitmentsin the tree. Also, clearing the processed shield events mightlead
to creating duplicate vouchers for the same shielding. Our recommendation is to be extremely cautious
when migrating x/hush state to make sure itremains consistent with whatis in the Merkle tree. Additionally
during migrations, hard forks, etc. take extreme care when handling nullifiers to avoid reseting them.

- We understand the benefit of the *admin authority* account but it slightly contradicts a potential decen-
tralization argument. We recommend making it clear on who owns this account (e.g., multi-sig, etc.).
Additionally, in a disaster scenario, even if such an account exists, the account might not be extremely
helpful if a lot of ime is needed to fix a contract, upload a contract etc. It might also make sense to start
with a smaller-fixed set of trusted validators that can help with stopping chain, fast migrations, etc.

- msg.Nullifier is passed in UnshieldRequestParams and shieldedTransfer even though a different
balanceNullifiermighthave been usedin case !msg.HasBalanceNote (e.g., see here) leading to incon-
sistencies. Make sure to use the same balanceNullifier across your Unshield and ShieldedTransfer
methods.

Low

+ Instead of doing nullifierHex := string(nullifier) use hex.EncodeToString asis done everywhere
else where the nullifierHexis computed.
- Remove status from VoucherStatus since itis not used.
- Refrain from iterating over maps in InitGenesis (i.e., nullifiers) to prevent non-determinism.
- Unused code can be removed:
» realNullifierCount;
» buildUnshieldPublicInputs, ComputeCommitment, ComputeNullifier, and RpoHash.
» UnveillD store in theNullifierStore

Informal Systems © 2026 75

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L19
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L173
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L173
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L173
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L276
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L740
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/migrations/v13/store.go
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/migrations/v13/store.go#L101
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L32
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L278
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L173
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L110
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/proto/zrchain/hush/types.proto#L55
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/proto/zrchain/hush/genesis.proto#L31
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L100
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L376
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go#L329
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go#L329
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go#L329
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L479-L483

infor

SYS

Zenrock Q1 2026 Security AuditReport

zQ)
»—

=
m

Miscellaneous findings on CW contracts

Severity Informational Exploitability None Status Resolved

Type Implementation Impact None

- While the unbounded root history storage does not pose a security risk or affect query performance,
adding an admin-gated cleanup function to the miden-merkle contract (code ref) would enable storage
optimization for long-running deployments. A simple execute prune root history() function restricted
to the admin could accept a keep recent parameter to retain only the mostrecentN roots or roots newer
than a specified block height, removing ancient historical data thatis unlikely to be referenced. This would
be purely optional maintenance, operators who prefer complete historical provenance can simply never
invoke it, while those optimizing for storage costs can periodically prune entries beyond their compliance
requirements. The function should enforce minimum retention (e.g., at least HISTORY SIZE entries) to
prevent accidental deletion of roots within the active validity window. This issue has been addressed by
the development team in PR #869 and PR #901.

- The outputs parameter in the sudo verify() function (code ref) uses an unnecessarily nested
Vec<Vec<u64>> structure, despite the underlying StackOutputs::new() function requiring only a single
Vec<u64> (code ref). The implementation silently uses only outputs[0] and discards any additional
vectors, creating potential developer confusion during integration. While this APl design flaw does not
introduce security vulnerabilities, it represents a code quality issue that could lead to misuse or incorrect
assumptions about the verification interface. A simplified Vec<u64> parameter would improve clarity and
reduce the risk ofintegration errors. Thisissue has been addressed by the development team in PR #846.

- The inputs parameter in the sudo verify() function (code ref) relies on Miden’s
StackInputs::try from ints(), which silently pads input vectors up to 16 elements with zeros. While
this cannot be exploited maliciously, it can mask programming errors where the wrong number of public
inputs is passed, leading to cryptic verification failures. Adding explicit input count validation at both
the keeper layer (len(publicInputs) != 8)and contractlayer would provide fail-fast behavior with clear
error messages, making integration bugs immediately obvious. This issue has been addressed by the
development team in PR #869.

- The sudo add commitment() function (code ref) lacks an explicit validation check to reject
commitments that equal the empty leaf() value (the RPO hash of [0,0,0,0]), which serves
as the default placeholder for unoccupied leaf positions in the sparse Merkle tree. If such
a collision were to occur, it would create semantic ambiguity where a stored commitment
produces the same Merkle root as an unoccupied position. Adding a simple equality check
if commitment == word to bytes(&empty leaf()) { return Err(...) } would provide defense-in-
depth at negligible gas cost, eliminating any theoretical semantic confusion, though it offers no practical
security benefit, given the callision resistance guarantees, and should be considered a code clarity
improvement rather than a vulnerability fix. This issue has been addressed by the development team in
PR #8609.

Informal Systems © 2026 76

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs
https://github.com/zenrocklabs/zenrock/pull/869
https://github.com/zenrocklabs/zenrock/pull/901
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-verifier/src/contract.rs#L63
https://github.com/0xMiden/miden-vm/blob/next/core/src/stack/outputs.rs#L35
https://github.com/zenrocklabs/zenrock/pull/846
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-verifier/src/contract.rs#L62
https://github.com/zenrocklabs/zenrock/pull/869
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L214
https://github.com/zenrocklabs/zenrock/pull/869

infor

SYS

zQ)
»—

=
m

Zenrock Q1 2026 Security AuditReport

Appendix: Vulnerability Classification

For classifying vulnerabilities identified in the findings of this report, we employ the simplified version of
Common Vulnerability Scoring System (CVSS) v3.1, which is an industry standard vulnerability metric. For
each identified vulnerability we assess the scores from the Base Metric Group, the Impact score, and the
Exploitability score. The Exploitability score reflects the ease and technical means by which the vulnerability
canbe exploited. Thatis, itrepresents characteristics of the thing that is vulnerable, which we refer to formally
as the vulnerable component. The Impact score reflects the direct consequence of a successful exploit, and
represents the consequence to the thing that suffers the impact, which we refer to formally as the impacted
component. In order to ease score understanding, we employ CVSS Qualitative Severity Rating Scale, and
abstractnumerical scores into the textual representation; we construct the final Severity score based on the
combination of the Impact and Exploitability sub-scores.

As blockchains are a fast evolving field, we evaluate the scores not only for the present state of the system,
but also for the state that deems achievable within 1 year of projected system evolution. E.g., if at present
the system interacts with 1-2 other blockchains, butplans to expand interaction to 10-20 within the next year,
we evaluate the impact, exploitability, and severity scores wrt. the latter state, in order to give the system
designers better understanding of the vulnerabilities that need to be addressed in the near future.

Impact Score

The Impactscore captures the effects of a successfully exploited vulnerability on the component that suffers
the worst outcome thatis most directly and predictably associated with the attack.

Informal Systems © 2026 7

https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/specification-document#2-3-Impact-Metrics
https://www.first.org/cvss/specification-document#2-1-Exploitability-Metrics
https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale

informal
SYSTEMS
Zenrock Q1 2026 Security AuditReport
Impact Score Examples
@ High Halting of the chain; loss, locking, or unautho-

rized withdrawal of funds of many users; arbitrary
fransaction execution; forging of user messages |/
circumvention of authorization logic

Temporary denial of service | substantial un-
expected delays in processing user requests
(e.g. many hours/days); loss, locking, or unau-
thorized withdrawal of funds of a single user |/
few users; failures during transaction execution
(e.g. outofgas errors); substantial increase in node
computational requirements (e.g. 10x)

) Medium

@ Low Transient unexpected delays in processing user
requests (e.g. minutesfa few hours); Medium
increase in node computational requirements
(e.g. 2x); any kind of problem that affects end users,
but can be repaired by manual intervention (e.g. a

special transaction)

@ None Smallincrease in node computational requirements
(e.g. 20%); code inefficiencies; bad code prac-
tices; lack/incompleteness of tests; lack/incom-

pleteness of documentation

Exploitability Score

The Exploitability score reflects the ease and technical means by which the vulnerability can be exploited;
it represents the characteristics of the vulnerable component. In the below table we list, for each category,
examples of actions by actors that are enough to trigger the exploit. In the examples below:

- Actors can be any entity that interacts with the system: other blockchains, system users, validators,
relayers, but also uncontrollable phenomena (e.g. network delays or partitions).
- Actions can be
» legitimate, e.g. submission of a transaction that follows protocol rules by a user; delegation/fredelegation/
bonding/unbonding; validator downtime; validator voting on a single, but alternative block; delays in
relaying certain messages, or speeding up relaying other messages;

» illegitimate, e.g. submission of a specially crafted transaction (not following the protocol, or e.g. with
large/incorrect values); voting on two different alternative blocks; alteration of relayed messages.

- We employ also a qualitative measure representing the amount of certain class of power (e.g. possessed
tokens, validator power, relayed messages): small for < 3%; medium for 3-10%; large for 10-33%, all for
>33%. We further quantify this qualitative measure as relative to the largest of the system components.
(e.g. when two blockchains are interacting, one with a large capitalization, and another with a small

Informal Systems © 2026 78

informa

SYSTEMS

Zenrock Q1 2026 Security AuditReport

capitalization, we employ small wrt. the number of tokens held, ifitis small wrt. the large blockchain, even
ifitis large wrt. the small blockchain)

Exploitability Score Examples

@ High illegitimate actions taken by a small group of actors;
possibly coordinated with legitimate actions taken
by a medium group of actors

Medium illegitimate actions taken by a medium group of
actors; possibly coordinated with legitimate actions
taken by a large group of actors

@ Low illegitimate actions taken by a large group of actors;
possibly coordinated with legitimate actions taken
by all actors
@ None illegitimate actions taken in a coordinated fashion
by all actors

Severity Score

The severity score combines the above two sub-scores into a single value, and roughly represents the
probability of the system suffering a severe impact with time; thus it also represents the measure of the
urgency or order in which vulnerabilities need to be addressed. We assess the severity according to the
combination scheme represented graphically below.

As can be seen from the image above, only a combination of high impact with high exploitability results in
a Critical severity score; such vulnerabilities need to be addressed ASAP. Accordingly, High severity score
receive vulnerabilities with the combination of high impactand medium exploitability, or medium impact, but
high exploitability.

Informal Systems © 2026 79

informal
SYSTEMS
Zenrock Q1 2026 Security AuditReport
Severity Score Examples
@ Critical Halting of chain via a submission of a specially
crafted transaction
@ High Permanent loss of user funds via a combination

of submitting a specially crafted transaction with
delaying of certain messages by a large portion of
relayers

Medium Substantial unexpected delays in processing user
requests via a combination of delaying of certain
messages by a large group of relayers with coordi-
nated withdrawal of funds by a large group of users

@ Low 2xincrease in node computational requirements via
coordinated withdrawal of all user tokens

@ Informational Code inefficiencies; bad code practices; lack/
incompleteness of tests; lack/incompleteness of
documentation; any exploit for which a coordinated

illegitimate action of all actors is necessary

Informal Systems © 2026 80

infor

SYS

zQ)
»—

=
m

Zenrock Q1 2026 Security AuditReport

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability, etc.) set forth in the associated Services Agreement. This
report provided in connection with the Services set forth in the Services Agreement shall be used by the
Company only to the extent permitted under the terms and conditions set forth in the Agreement.

This auditreportis provided on an “asis” basis, with no guarantee of the completeness, accuracy, timeliness
or of the results obtained by use of the information provided. Informal has relied upon information and
data provided by the client, and is not responsible for any errors or omissions in such information and
data or results obtained from the use of that information or conclusions in this report. Informal makes no
warranty of any kind, express or implied, regarding the accuracy, adequacy, validity, reliability, availability
or completeness of this report. This report should not be considered or utilized as a complete assessment
of the overall utility, security or bugfree status of the code.

This audit report contains confidential information and is only intended for use by the client. Reuse or
republication of the audit report other than as authorized by the clientis prohibited.

Thisreportisnot, nor shoulditbe considered, an “endorsement”, “approval” or “disapproval” of any particular
project or team. This reportis not, nor should it be considered, an indication of the economics or value of
any “product” or “asset” created by any team or project that contracts with Informal to perform a security
assessment. Thisreport does notprovide any warranty or guarantee regarding the absolute bug-free nature
of the technology analyzed, nor does it provide any indication of the client’s business, business model
or legal compliance. This report should not be used in any way to make decisions around investment or
involvement with any particular project. This reportin no way provides investment advice, nor should it be
leveraged as investment advice of any sort.

Blockchain technology and cryptographic assetsin general and by definition presentahigh level of ongoing
risk. Clientis responsible for its own due diligence and continuing security in this regard.

Informal Systems © 2026 81

	Audit Overview
	The Project
	Scope of this report
	Audit plan
	Conclusions

	System Overview
	Hush privacy protocol
	System architecture

	Components
	hush-wasm library
	x/hush module
	Miden ZK circuits
	miden-merkle contract
	miden-verifier contract

	Audit Dashboard
	Target Summary
	Engagement Summary
	Severity Summary

	Threat Model
	Property HUSH-01: Each voucher (commitment) can only be spent (transferred or withdrawn) exactly once
	Property HUSH-02: If a user deposits amount Q of asset type A, then a spendable commitment is created that cryptographically binds the correct amount Q and asset type A, and only the depositor (holding the corresponding spending key) can spend it
	Property HUSH-03: If a user submits a valid unshield proof for amount Q of asset type A with fee F, then after state transitions are confirmed, the user receives Q tokens of asset type A, the pool balance decreases by Q+F, and the fee F is collected
	Property HUSH-04: If a user submits a valid shielded transfer proof sending amount Q of asset type A with fee F to recipient R, then after state transitions are confirmed, the sender's commitment is nullified, the recipient receives a spendable commitment for Q tokens of asset type A, and the fee F is collected
	Property HUSH-05: Commitments are created only with deposits or as outputs from valid transfers, and nullifiers are added only with withdrawals or as outputs from valid transfers
	Property HUSH-06: The global supply accounting invariant TotalShielded + PendingUnshields + TotalUnshielded + TotalFeesBurned = Total Ever Shielded always holds after any state transition
	Property HUSH-07: If a voucher record exists with commitment C, then commitment C exists in the Merkle tree at some leaf position, and sum of all spendable voucher amounts equals (total shielded) - (total unshielded) - (total fees collected)
	Property HUSH-08: Only a user who knows the complete commitment pre-image (note secret, randomness, amount, asset) and holds the spending key from which the nullifier key is derived can spend that commitment
	Property HUSH-09: If a user has spending key SK, then only holders of keys derived from SK can decrypt voucher amounts: spending key holder (full access), full viewing key holder (decrypt only, no spend), incoming viewing key holder (decrypt received only), no key holder (see only encrypted data)
	Property HUSH-10: If a user performs a shielded transfer of amount Q from commitment C1 to recipient R, observers cannot determine recipient's identity, amount Q being transferred, or which commitment C1 is being spent
	Property HUSH-11: All protocol components correctly integrate with Miden VM and produce cryptographic results (commitments, nullifiers, hashes, Merkle paths) that are consistent with Miden VM circuit behavior
	Property HUSH-12: The Merkle tree implementation provides sound membership proofs: valid proofs are accepted for leaves in the tree, and no valid proof exists for leaves not in the tree; the tree preserves insertion order and historical roots
	Property HUSH-13: All message fields are validated before processing
	Property HUSH-14: Queries are properly constructed with valid parameters, execution errors are handled correctly, and responses are correctly interpreted by the caller
	Property HUSH-15: Wallet signatures used for key hierarchy derivation are treated as secrets and never persisted, logged, or transmitted
	Property HUSH-16: Private keys (spending, nullifier, viewing) are never leaked through explicit channels (logging, network transmission, plaintext storage) or side-channels (timing, cache behavior)

	Findings
	Unshield recipient address not cryptographically bound to ZK proof
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Note secret and randomness not cryptographically bound to spending key
	Involved artifacts
	Description
	Problem scenarios
	Double-spend balance note
	Double-spend of stealth transfer incoming notes

	Recommendation
	Resolution

	Cross-asset theft vulnerability
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Circumventing fees
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Reusing balance nullifier
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Hardcoded note sequence limit
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Integer overflow in balance accumulation
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Unsanitized u64 as field element
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Missing shared secret validation
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resoultion

	Stealth recovery mismatch
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Missing message validation in x/hush handlers
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Cross-chain linkability
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Mempool proof replay attack
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Missing tree depth validation makes the contract unusable
	Involved artifacts
	Description
	Test

	Problem scenarios
	Recommendation
	Resolution

	Lack of confirmation during admin updates
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Nullifier key derivation mismatch in account recovery
	Involved artifacts
	Description
	Test

	Problem scenarios
	Recommendation
	Resolution

	Erroneous supply stats
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Unbounded Merkle Depth (DoS vector)
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Unbounded JSON string (DoS vector)
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Missing host-side new balance validation (DoS vector)
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Silent recipient string truncation
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	AddCommitment overwrites
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Missing check for leaf_index
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Commitment field ordering inconsistency
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Duplicate vouchers compute wrong balance
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Missing integer overflow check in x/hush module
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Note secret derivation inconsistency between balance notes and vouchers
	Involved artifacts
	Description
	Recommendation
	Note
	Resolution

	Duplicate incoming notes not validated
	Involved artifacts
	Description
	Problem scenarios
	Recommendation

	Resolution

	Viewing key lifetime leak
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Miscellaneous findings on hush-wasm
	Involved artifacts
	High
	Medium
	Low
	Resolution

	Miscellaneous findings in hush.masm
	Unconstrained asset value
	No validation of incoming_count

	Miscellaneous comments on x/hush
	Recommendations
	High
	Low

	Miscellaneous findings on CW contracts

	Appendix: Vulnerability Classification
	Impact Score
	Exploitability Score
	Severity Score

	Disclaimer

