
Security Audit Report

Zenrock Q1 2026 - Hush privacy

protocol

Last Revised:

03.02.2026

Authors:

Carlos Rodriguez,

 Karolos Antoniadis,

 Ranadeep Biswas,

 Simon Noetzlin,

 Luca Joss,

 Aleksandar Stojanovic,

 Vukašin Dokmanović

Zenrock Q1 2026 Security Audit Report

Contents

Audit Overview 1

The Project . 1

Scope of this report . 1

Audit plan . 1

Conclusions . 1

System Overview 3

Hush privacy protocol . 3

Components . 4

Audit Dashboard 7

Target Summary . 7

Engagement Summary . 7

Severity Summary . 7

Threat Model 8

Findings 31

Unshield recipient address not cryptographically bound to ZK proof . 34

Note secret and randomness not cryptographically bound to spending key 35

Cross-asset theft vulnerability . 37

Circumventing fees . 39

Reusing balance nullifier . 40

Hardcoded note sequence limit . 41

Integer overflow in balance accumulation . 42

Unsanitized u64 as field element . 44

Missing shared secret validation . 45

Stealth recovery mismatch . 47

Missing message validation in x/hush handlers . 48

Cross-chain linkability . 49

Mempool proof replay attack . 50

Missing tree depth validation makes the contract unusable . 52

Lack of confirmation during admin updates . 54

Nullifier key derivation mismatch in account recovery . 55

Erroneous supply stats . 57

Informal Systems © 2026 i

Zenrock Q1 2026 Security Audit Report

Unbounded Merkle Depth (DoS vector) . 58

Unbounded JSON string (DoS vector) . 59

Missing host-side new balance validation (DoS vector) . 60

Silent recipient string truncation . 62

AddCommitment overwrites . 63

Missing check for leaf_index . 64

Commitment field ordering inconsistency . 65

Duplicate vouchers compute wrong balance . 66

Missing integer overflow check in x/hush module . 67

Note secret derivation inconsistency between balance notes and vouchers 69

Duplicate incoming notes not validated . 70

Viewing key lifetime leak . 71

Miscellaneous findings on hush-wasm . 72

Miscellaneous findings in hush.masm . 74

Miscellaneous comments on x/hush . 75

Miscellaneous findings on CW contracts . 76

Appendix: Vulnerability Classification 77

Disclaimer 81

Informal Systems © 2026 ii

Zenrock Q1 2026 Security Audit Report

Audit Overview

The Project
In January 2026, Zenrock engaged Informal Systems to perform a security audit of the Hush Privacy protocol.

Scope of this report
The audit evaluated the correctness and security properties of the hush-wasm library, the x/hush module,

Miden ZK circuits, the miden-merkle contract, and the miden-verifier contract within the Hush Privacy

protocol.

Audit plan
The audit was conducted between January 14th, 2026 and January 23rd, 2026, by the following personnel:

• Carlos Rodriguez

• Karolos Antoniadis

• Ranadeep Biswas

• Simon Noetzlin

• Luca Joss

• Aleksandar Stojanović

• Vukašin Dokmanović

Conclusions
The Zenrock development team has built an ambitious and technically sophisticated privacy protocol that

leverages Miden STARKs to provide shielded transactions for wrapped assets on Solana. The codebase

demonstrates strong engineering practices with comprehensive documentation, thoughtful architecture

decisions and proactive security considerations. The team’s responsiveness to identified issues and

willingness to address design concerns speaks highly of their commitment to security. However, our audit

uncovered several critical vulnerabilities that required immediate attention before mainnet deployment.

We identified a design flaw where the circuit fails to cryptographically bind note_secret to spending_key,

allowing anyone who knows a commitment’s pre-image to generate unlimited valid proofs using different

spending keys—each producing a unique nullifier that bypasses double-spend protection. Additionally,

the protocol suffers from other critical issues. Some of them are: asset type is not included in the proof’s

cryptographic binding (enabling cross-asset theft where attackers can withdraw one asset using a proof

for another), values throughout the system are not validated to be less than the Goldilocks field modulus

before field arithmetic operations (enabling wraparound attacks), and neither asset type nor sender address

are bound to proofs (enabling mempool replay attacks where valid transactions can be intercepted and

replayed with modified fields). These vulnerabilities stem from missing cryptographic bindings between

proof components and inadequate input validation at system boundaries.

Informal Systems © 2026 1

Zenrock Q1 2026 Security Audit Report

Additionally, other findings around input validation, duplicate detection, commitment ordering inconsisten

cies, and mempool replay attacks highlight gaps in defense-in-depth. A critical overarching issue is that

circuit inputs on both the operand stack and advice tape are frequently not sanitized before being treated

as field elements—all numeric values (amounts, fees, assets, sequences, leaf indices) should be explicitly

reduced modulo p and validated against reasonable protocol-specific bounds (e.g., maximum amount per

note of 2^62 to prevent accumulation overflow). Beyond these specific vulnerabilities, we recommend to

deploy zrchain to a dedicated security testnet with adversarial testing scenarios (cross-asset proofs, nullifier

replays, field overflow edge cases, mempool front-running) to validate that on-chain validation and ZK

circuit constraints properly mitigate these attacks. This complements static code review by verifying runtime

behavior under real attack conditions and ensures the circuit-client-chain integration behaves correctly

under Byzantine inputs.

Once the initial audit ended, the development team addressed all findings shortly after and we reviewed the

fixes and updated the status of the findings.

Informal Systems © 2026 2

Zenrock Q1 2026 Security Audit Report

System Overview

Hush privacy protocol
The Hush privacy protocol provides privacy for wrapped assets (zenBTC, jitoSOL) through a two-chain

architecture combining Solana’s settlement layer with zrchain’s privacy layer. Users shield tokens on Solana

by transferring them to a vault, receiving cryptographic commitments on zrchain that obscure amounts and

ownership. They can then perform untraceable shielded transfers to other users or unshield to a new Solana

address with no on-chain link to the original shield transaction. The protocol operates across three layers:

• Solana (token custody via vaults),

• zrchain (shielded state management via x/hush module, miden-merkle contract for Merkle tree operations,

and miden-verifier contract for STARK proof verification),

• and browser (hush-wasm library for client-side proof generation).

Validator sidecars coordinate between chains by monitoring Solana events and submitting transactions to

both the module and MPC keyrings for signature generation. The privacy guarantees are enforced through

ZK circuits written in Miden assembly (hush.masm) that define the proving logic for unshield and shielded

transfer operations.

The protocol achieves transaction unlinkability through zero-knowledge proofs that allow users to prove they

own shielded tokens without revealing which specific tokens they’re spending. Each shielded balance is

represented by a cryptographic commitment that hides both the amount and the owner, and when spending,

users reveal a nullifier that prevents double-spending but cannot be linked back to the original commitment.

The system supports different levels of access through tiered viewing keys: spending keys provide full

control, full viewing keys allow auditing of all transactions, and incoming viewing keys only permit viewing

received amounts. All commitments are stored in a Merkle tree that maintains historical snapshots, allowing

users to generate proofs against any past state of the system.

Informal Systems © 2026 3

Zenrock Q1 2026 Security Audit Report

System architecture

Components

hush-wasm library

The hush-wasm library serves as the client-side cryptographic engine for the privacy protocol, providing

browser-based implementations of all cryptographic operations required for shielded transactions. It acts

as the bridge between user wallets and the on-chain privacy system, compiling Rust cryptographic code to

WebAssembly for execution in web browsers.

The library computes commitments from secret values that represent shielded notes in the Merkle tree

implemented in miden-merkle CW contract and derives nullifiers that mark notes as spent. For shielded

transfers, it handles ephemeral key generation and performs key exchange to establish shared secrets,

then encrypts transfer amounts so only the intended recipient can decrypt them. The library also derives

the hierarchical key structure from the wallet signature, producing nullifier keys for spending operations and

viewing keys that enable audit or receive-only capabilities without exposure to spending authority.

When configured with the prover feature, the library generates full STARK proofs directly in the browser. It

assembles the complete execution program from the Miden assembly circuit, constructs the advice stack

with all private inputs, including note secrets and Merkle authentication paths, builds the public stack inputs

with the outputs commitment hash and Merkle root, and executes the Miden VM to generate a proof that can

be verified on-chain.

The library also implements deterministic wallet recovery that allows users to reconstruct their entire trans

action history from a wallet signature. By signing standardized messages with sequential indices, users

derive the same note secrets they originally generated for each voucher, then query the blockchain for

vouchers with matching commitments to identify their own. Voucher amounts are encrypted on-chain using

keys derived from the spending key (for own balance notes) or ECDH shared secrets (for incoming trans

fers), allowing the library to decrypt and recover complete voucher data even if browser storage is cleared.

Informal Systems © 2026 4

Zenrock Q1 2026 Security Audit Report

x/hush module

The x/hush Cosmos SDK module serves as the privacy layer within the zrchain blockchain, orchestrating

confidential transactions using zero-knowledge proofs. It coordinates between user operations, blockchain

state, and cross-chain token movements, allowing users to deposit tokens from Solana into a shared privacy

pool, transfer funds within the pool with hidden amounts, and withdraw to any address without observers

being able to link deposits to withdrawals. By design, the module operates on a model where each shielded

voucher can be spent exactly once, with nullifiers serving as spent markers to prevent double-spending

while maintaining unlinkability between commitments and their spent state.

The module handles three core operations:

• Shield deposits occur when validators detect incoming transfers on Solana, screen the sender for compli

ance, and if approved, add the commitment to the privacy pool and issue a new voucher to the depositor.

• Unshielding allows users to withdraw tokens by submitting a cryptographic proof of ownership.

• Shielded transfers move value between users within the privacy pool by accepting ownership proofs,

creating new encrypted vouchers for recipients and change, and collecting fees.

The module maintains several key data structures to enable privacy operations. It tracks which vouchers

have been spent through permanent nullifier records, manages the lifecycle of withdrawal requests from

submission through signing and broadcasting to completion with automatic retry logic for failed attempts,

and coordinates with the miden-merkle contract to maintain a rolling window of valid historical roots that

users can prove against. For each operation, the module independently reconstructs a cryptographic

summary of all public transaction data and combines it with the user’s proof inputs to ensure verification

matches what the proof actually commits to, preventing any tampering with transaction details after proof

generation.

Miden ZK circuits

The hush.masm circuit functions as the cryptographic core of the privacy protocol, implementing a zero-

knowledge STARK program that proves the validity of unshielded and shielded transfers. The circuit receives

private inputs through Miden’s advice stack mechanism, including the user’s spending key, existing balance

note data (secret values, randomness, amount), and up to 24 incoming notes with their authentication paths.

It derives the nullifier key from the spending key, recomputes commitments for all input notes to verify

they match the claimed values, generates nullifiers to mark these notes as spent, and verifies each note’s

membership in the Merkle tree by checking authentication paths against the public root. The circuit then

accumulates all input amounts from both the existing balance and incoming notes, ensuring accounting

across note claims.

miden-merkle contract

The miden-merkle CosmWasm contract maintains a depth-configurable sparse Merkle tree to store com

mitments. When a commitment is added through the SudoMsg::AddCommitment interface (only callable by

the chain), the contract computes its position in the tree based on a sequential leaf index, updates all

parent hashes along the Merkle path using the RPO256 hash function, and stores the new root. To support

proof verification against historical states, the contract maintains a rolling window of recent roots via the

ROOT_HISTORY map, with a configurable HISTORY_SIZE that defaults to 1000 blocks.

Informal Systems © 2026 5

Zenrock Q1 2026 Security Audit Report

miden-verifier contract

The miden-verifier CosmWasm contract serves as the zero-knowledge proof verification endpoint. It

acts as a thin wrapper around the Miden VM’s native STARK verifier, translating data structures into the

formats required by Miden’s proof system. By design, the verifier is exclusively callable through the SudoMsg

interface, ensuring that only the x/hush module keeper can submit proofs for verification.

The contract’s primary responsibility is to verify Miden STARK proofs against a specified program hash

and public inputs. When the x/hush Keeper submits an unshielded or shielded transfer transaction, it calls

SudoMsg::Verify with four components: the program hash (identifying which circuit was executed), the

stack inputs (public values available to the verifier), the stack outputs (expected final stack state), and the

base64-encoded proof bytes. The contract deserializes the program hash into a RpoDigest, constructs a

ProgramInfo with the default Miden kernel, converts stack inputs and outputs into the appropriate Felt

representations, and invokes Miden VM’s verify() function.

Informal Systems © 2026 6

Zenrock Q1 2026 Security Audit Report

Audit Dashboard

Target Summary
• Type: Protocol and implementation

• Platform: Cosmos SDK, Go, Rust, CosmWasm, MASM

• Artifacts: At commit hash 6f555b9:

‣ hush-wasm library

‣ x/hush module

‣ Miden ZK circuits

‣ miden-merkle and miden-verifier contracts

Engagement Summary
• Dates: January 14th, 2026 → January 23rd, 2026

• Method: Threat modeling, manual code review, testing

Severity Summary

Finding Severity Number

Critical 6

High 5

Medium 11

Low 3

Informational 8

Total 33

Table 1: Identified Security Findings

Informal Systems © 2026 7

https://github.com/zenrocklabs/zenrock/commit/6f555b992a752918e6ece20fa3d323de7a6b4298

Zenrock Q1 2026 Security Audit Report

Threat Model
Assumptions:

• For zrchain:

1. The blockchain state is persistent and not subject to corruption or data loss.

2. Consensus mechanism properly replicates state across validators.

3. No chain reorganizations after finality.

4. zrchain sidecars parse shield events that originate from actual Solana on-chain events.

5. Shield events require ≥2/3 validator consensus and are not compromised.

6. Shielded token assets have maximum supplies below uint64 maximum value (~1.84×10¹⁹).

Property HUSH-01: Each voucher (commitment) can only be spent

(transferred or withdrawn) exactly once

• Threat a: Same commitment produces multiple distinct valid nullifiers, allowing the commitment to be spent

more than once (e.g., non-deterministic nullifier computation, circuits allowing arbitrary nullifiers, etc)

The threat holds.

‣ hush.masm: The same commitment can produce multiple distinct valid nullifiers because the

spending_key is an unconstrained private input, allowing any prover to generate valid proofs for the

same commitment with different spending keys, resulting in different nullifiers. The circuit does to verify

that the spending_key used to compute the nullifier is the same spending_key that was used to create the

commitment’s note_secret. Since nullifier_A ≠ nullifier_B, both can be marked as spent sepa

rately, allowing the same commitment to be double-spent. See finding “Note secret and randomness

not cryptographically bound to spending key”.

• Threat b: Nullifier spent status not persisted correctly or can be reset, allowing previously spent nullifiers

to be reused

The threat does not hold.

‣ x/hush: Nullifier spent status is stored in the NullifiersStore. When a nullifier is marked as spent

via MarkNullifierSpent, it is written to state forever (there is no method to remove a nullifier from

NullifierStore). Before processing any nullifier, we call IsNullifierSpent check in Unshield for the

balance nullifier and the incoming nullifiers and hence verify that each nullifier has not been spent. We

have the same checks in ShieldedTransfer for balance and incoming nullifiers. Then, in Unshield and

in ShieldedTransfer the nullifiers are marked here and here, respectively. Because a transaction is

executed atomically, all the unused nullifiers are marked and they cannot be used ever again; note that

Unshield or ShieldedTransfer cannot return successfully at any point before the nullifiers are marked.

• Threat c: Nullifier spent status not checked before processing, allowing the same proof to be submitted

and accepted multiple times

The threat holds.

Informal Systems © 2026 8

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L46
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L480-L483
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L467-L477
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L138
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L152
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L596
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L605
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L245-L260
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L662-L677

Zenrock Q1 2026 Security Audit Report

‣ x/hush: Unshield and ShieldedTransfer check if there are duplicates in the incoming nullifiers.

However, there is no check to prevent the balance nullifier (i.e., msg.Nullifier) from being used as

an incoming nullifier. As a result, a user could submit the balance nullifier as an incoming nullifier and

double spend the amount of tokens he has.

Property HUSH-02: If a user deposits amount Q of asset type A, then

a spendable commitment is created that cryptographically binds the

correct amount Q and asset type A, and only the depositor (holding

the corresponding spending key) can spend it

• Threat a: User deposits tokens of asset type A, but receives commitment for asset type B

The threat does not hold under the assumptions 4 and 5. The processShieldEvents ABCI handler

processes shield events from oracle data, which originates from Solana on-chain events. The

shieldEvent.Asset is determined by which Solana EventStore program emitted the event, ensuring the

voucher’s asset type matches what was actually deposited. The commitment stored on-chain correctly

encodes asset type A. Note that a separate vulnerability exists where a user can unshield their correctly-

created commitment as a different asset type. We have reported this issue in finding “Cross-asset theft

vulnerability”.

• Threat b: User deposits Q tokens, but the total quantity of commitment created is Q’, where Q’ ≠ Q

Similar to Threat a, the shieldEvent.Amount is sourced from Solana on-chain events via the oracle. The

amount is correctly propagated from the EventStore to the voucher creation, ensuring the commitment

binds the deposited quantity Q.

• Threat c: User deposits Q tokens, but created commitment not spendable (cannot generate valid proofs

or nullifiers)

The threat does not hold. The commitment is added to the Merkle tree atomically via AddCommitment.

Spendability depends on the client possessing the correct spending key to generate valid nullifiers and

ZK proofs.

• Threat d: User deposits Q tokens, but created commitment controlled by a non-intended user (wrong

spending_key derivation).

The threat holds. When a user shields tokens, they generate a balance note by deriving note_secret and

randomness from their spending_key and sequence number (code ref). The commitment is then computed

as hash(hash(note_secret, randomness), [amount, seq, 0, asset]) (code ref). This commitment is

cryptographically bound to the specific spending_key used during generation. However, if the pre-image

of the commitment is compromised, an attacker can spend the voucher using their own spending_key

because the circuit verifies that the spending_key used to compute the nullifier is the same spending_key

that was used to create the commitment’s note_secret and randomness. This is the same issue as the one

reported in finding “Note secret and randomness not cryptographically bound to spending key”.

Informal Systems © 2026 9

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L98-L115
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L535-L551
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L496C23-L497
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L498

Zenrock Q1 2026 Security Audit Report

Property HUSH-03: If a user submits a valid unshield proof for

amount Q of asset type A with fee F, then after state transitions

are confirmed, the user receives Q tokens of asset type A, the pool

balance decreases by Q+F, and the fee F is collected

• Threat a: User unshields commitment of asset type A, but receives tokens of asset type B

The threat holds.

‣ hush.masm: While asset type is cryptographically bound within individual commitments, it

is not included in the proof’s public outputs (outputs_commitment), allowing an attacker

to spend commitments of one asset type while claiming to spend a different asset

type, effectively converting between assets without authorization. The circuit loads asset

from advice (code ref) and correctly includes it in all commitment computations, ensuring

commitment = hash(hash(note_secret, randomness), [amount, seq, 0, asset]). However, the

asset value is never included in the outputs_commitment that binds the proof’s public outputs. The

circuit uses one asset value to compute commitments and verify Merkle proofs, while the chain uses

msg.Asset from the transaction message to create new vouchers and determine the asset type for

unshielding. We have reported this issue in finding “Cross-asset theft vulnerability”.

• Threat b: User unshields commitment for amount Q, but receives amount Q’ on Solana where Q’ ≠ Q

The threat does not hold.

‣ hush.masm: The circuit correctly includes the recipient amount in the outputs_commitment for unshields

(as opposed to transfers where the amount is kept private by using 0—code ref).

‣ hush-wasm: The library correctly passes the recipient_amount to the proof generation and includes it

in the outputs commitment computation.

‣ x/hush: The module recomputes the outputs commitment using msg.Amount from the message and

verifies the ZK proof against this commitment. If a user attempts to generate a proof with amount

Q but submits a message claiming amount Q’, the proof verification will fail because the computed

outputs commitments will not match. Only after successful proof verification does the chain create

an UnshieldRequest with the validated amount, which is then used to construct the Solana transfer

instruction.

• Threat c: Fee calculation contains arithmetic errors (overflow/underflow/rounding)

The threat does not hold for rounding/overflow/underflow during arithmetic operations (code ref), however,

there is an edge case that can prevent legitimate users to transact (although the likelihood is low because

the user’s balance would need to be very large).

‣ hush.masm: The circuit performs all arithmetic in the Goldilocks field (modulo

p = 2^64 - 2^32 + 1 = 18446744069414584321), where operations automatically reduce results ex

ceeding the modulus. However, the user-controlled amounts (new_balance_amount, recipient_amount)

are pushed directly to the advice tape as raw u64 integers without field validation. When constructing

the advice inputs, these values are converted to Felt using Felt::new() (code ref), which does not

check if the value exceeds the Goldilocks modulus p = 2^64 - 2^32 + 1.

Informal Systems © 2026 10

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L329
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L645
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L228-L231
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3763-L3765

Zenrock Q1 2026 Security Audit Report

‣ x/hush: The chain-side validation uses native Go uint64 arithmetic without field reduction, only checking

for uint64 overflow (values exceeding 2^64 - 1). This creates a gap: amounts between the Goldilocks

modulus and 2^64 - 1 will pass the chain’s overflow check. When individual values (msg.Amount or

msg.Fee) are >= GOLDILOCKS_MODULUS these pass the chain’s overflow check but create invalid field

elements in the CosmWasm contract.

‣ miden-merkle: The x/hush module queries miden-merkle contract on endpoint

query_rpo_hash_circuit passing the public outputs. The contract uses Felt::new() which does not

reduce values >= modulus (ref) resulting in invalid Felt elements with values outside the field.

When both sides operate on invalid field elements (values >= 18446744069414584321), the resulting

behavior may produce incorrect results or undefined behavior. We have documented this issue in finding

“Unsanitized u64 as field element”.

• Threat d: Fee deduction skipped or bypassable, allowing unshield to proceed without required fees

The threat does not hold.

‣ hush.masm: The circuit enforces conservation of value where the fee must be included in the

balance equation: total_input = new_balance + recipient_amount + fee. The fee is cryptographi

cally bound in the outputs_commitment, preventing users from generating a proof with one fee value

but claiming a different fee in the message

‣ x/hush: The module enforces for unshields that supply.TotalShielded is decremented by

totalDeduction = amount + fee (code ref), ensuring fees are properly accounted for in supply track

ing.

Property HUSH-04: If a user submits a valid shielded transfer proof

sending amount Q of asset type A with fee F to recipient R, then after

state transitions are confirmed, the sender’s commitment is nullified,

the recipient receives a spendable commitment for Q tokens of asset

type A, and the fee F is collected

• Threat a: Shielded transfer creates output commitment with an asset type different from the input

The threat does not hold.

‣ hush.masm: The circuit loads a single asset value (code ref) and uses this same asset for all three com

mitments: the balance note being spent (code ref), the new balance note (code ref), and the recipient

note (code ref). The input commitment’s asset type is cryptographically enforced through Merkle path

verification, and all output commitments are guaranteed to contain the same asset. Therefore, the actual

commitment hashes never have mismatched asset types.

However, a related vulnerability exists: mismatched voucher metadata creates permanently unspend

able funds. While the commitments themselves are internally consistent, the circuit does not bind the

asset to the outputs_commitment (code ref). A user can generate a valid proof with asset_A, but submit

MsgShieldedTransfer with asset_B. The proof verifies successfully, and the chain creates vouchers

tagged with asset_B metadata. These vouchers store commitment hashes that contain asset_A (crypto

Informal Systems © 2026 11

https://docs.rs/miden-crypto/latest/miden_crypto/struct.Felt.html#method.new
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L232
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L333
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L377
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L532
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L583
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L631-L640

Zenrock Q1 2026 Security Audit Report

graphically), but the Asset field claims asset_B. When attempting to spend later, the wallet uses asset_B

from metadata to compute the commitment preimage, producing a different hash that doesn’t exist in

the Merkle tree. The funds become permanently unspendable. This issue’s root cause is the same as

the one reported for finding “Mempool proof replay attack”.

• Threat b: Sender transfers amount Q, but recipient receives commitment with total amount Q’ where Q’

≠ Q

The threat does not hold.

‣ hush.masm: The circuit enforces that the recipient_amount value is loaded exactly once

from the advice tape (code ref) and stored in memory. This single value is then

used both in the recipient commitment computation (code ref) and in the conservation

of value equation (code ref). The commitment cryptographically binds the amount as

hash(hash(note_secret, randomness), [amount, 0, 0, asset]), and the conservation check en

forces total_input = new_balance_amount + recipient_amount + fee.

• Threat c: Sender transfers amount Q, but created commitment not spendable by the recipient (cannot

generate valid proofs or nullifiers)

The threat does not hold.

‣ hush.masm: The design requires the sender to deterministically derive note_secret and randomness

from ECDH shared secrets with the recipient’s pubkeys (code ref). However, please note that the circuit

does not enforce this derivation. The circuit accepts arbitrary note_secret and randomness values from

the advice tape and uses them to compute the commitment (code ref). If the sender uses incorrect

note_secret or randomness values (whether through malice, software bugs, or incorrect recipient

pubkeys), the resulting commitment gets inserted into the Merkle tree and marked as the recipient’s

voucher. However, the recipient cannot decrypt the encrypted amount to learn the commitment pre-

image. The funds become permanently locked.

• Threat d: Sender transfers to recipient R, but created commitment controlled by a non-intended user

The threat does not hold.

‣ hush.masm: The design requires the sender to deterministically derive note_secret and randomness

from ECDH shared secrets with the recipient’s pubkeys (code ref). Unless the sender uses the incorrect

recipient_viewing_pubkey (whether through software bugs, or human error) the created commitment

would be spendable by the intended recipient.

• Threat e: Fee calculation contains arithmetic errors (overflow/underflow/rounding)

The threat does not hold for rounding/overflow/underflow during arithmetic operations, however, there is

an edge case that can prevent legitimate users from transacting (although the likelihood is low because

the user’s balance would need to be very large).

Similarly as for Property HUSH-03, Threat c, while the transfer fee is fixed (code ref), user-controlled

amounts (new_balance_amount, recipient_amount) are pushed directly to the advice tape as raw u64

integers without field validation. We have documented this issue in finding “Unsanitized u64 as field

element”.

Informal Systems © 2026 12

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L544
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L585
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L597-L598
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L1718-L1727
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L575-L576
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L1718-L1727
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L503

Zenrock Q1 2026 Security Audit Report

• Threat f: Fee deduction skipped or bypassable, allowing transfer to proceed without required fees

The threat holds.

‣ x/hush: If a user does not provide a FeeCommitment then hasFeeCommitment is not set and as a result the

fee-voucher-related code is not even called. Even worse, even if a FeeCommitment is provided, there is

no check that this commitment can be spent by the fee collector in any way, so the created fee voucher

remains unspendable or the user can send it back to himself.

Property HUSH-05: Commitments are created only with deposits or

as outputs from valid transfers, and nullifiers are added only with

withdrawals or as outputs from valid transfers

• Threat a: Transfer creates output commitment but fails to nullify input commitment

The threat does not hold. In ShieldedTransfer, nullifiers are marked spent (code ref), then output vouchers

are created (code ref). All operations execute within the same Cosmos SDK transaction context, ensuring

atomicity.

• Threat b: Input commitment is nullified but output commitment is not created

The threat does not hold. In both Unshield and ShieldTransfer handler, input and output commitments

are respectively nullified and created within the same atomic transaction. If the voucher creation

fails in Unshield (code ref) an error is returned, causing the entire transaction to revert. Similarly in

ShieldedTransfer, any failure in CreateChangeVoucherPrivate calls (code ref) reverts all state changes,

including nullifier marks.

• Threat c: Commitments created without corresponding shield event or valid transfer proof (including cross-

asset replay attacks where proof is valid but no actual deposit occurred on the target asset)

The threat does not hold under assumptions 4 and 5. Commitments can only be created through three

code paths:

1. Shield events: processShieldEvents creates vouchers only from consensus-verified oracle data

(code ref). Under assumptions 4 and 5, these events represent actual Solana deposits.

2. Unshield change vouchers: Created in Unshield handler only after ZK proof verification succeeds

(code ref).

3. Transfer output vouchers: Created in ShieldedTransfer handler only after ZK proof verification

succeeds (code ref).

• Threat d: Nullifiers marked as spent without valid proof verification

The threat does not hold. In both Unshield and ShieldTransfer handlers, nullifiers are marked spent only

after the ZK proof verification succeeded.

Informal Systems © 2026 13

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L573
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L573
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L714-L730
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L720
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L665-L680
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L691-L733
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L300
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L693-L723
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L24-L67
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L651-L657
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L651-L657

Zenrock Q1 2026 Security Audit Report

Property HUSH-06: The global supply accounting invariant Total

Shielded + PendingUnshields + TotalUnshielded + TotalFeesBurned

= Total Ever Shielded always holds after any state transition

• Threat a: Integer overflow in TotalShielded counter

The threat does not hold under assumptions 4, 5, and 6. The TotalShielded counter is incremented in

processShieldEvents → createVoucherInternal (code ref) using the shieldEvent.amount originating

from the oracle data. Note that we have reported a related recommendation to add an integer overflow

check in the finding “Missing integer overflow check in x/hush module”.

• Threat b: Integer underflow in TotalShielded when processing unshields with fees

The threat does not hold. The TotalShielded counter is only decremented in the Unshield handler

(code ref), which explicitly checks for overflow before amount + fee addition and underflow before

TotalShielded -= totalDeduction.

• Threat c: Non-atomic updates to supply counters

The threat does not hold. All supply updates are executed atomically within the same transaction context

using Cosmos SDK’s transactional state management.

• Threat d: Fee calculation overflow or rounding errors cause the calculated fee to differ from the deducted

amount

The threat does not hold under assumptions 4, 5 and 6. All fee computations use integer arithmetic only

and are checked for overflow and underflow in the Unshield handler (code ref).

• Threat e: Fee deduction from TotalShielded not synchronized with TotalFeesBurned increment

The threat does not hold. The TotalShielded decrement and TotalFeesBurned increment are performed

atomically within the same transaction in the Unshield handler (code ref).

• Threat f: State migration or upgrade fails to preserve supply accounting correctly

The threat does not hold. The migration system uses two mechanisms that preserve supply accounting:

1. Devnet-only state clears: Migrations that clear state (v5→v6 through v12→v13) are guarded by a chain

ID prefix check that only allows execution on “amber” (devnet) chains (code ref). Non-amber chains

(including mainnet) skip these migrations entirely and preserve the existing supply.

2. Genesis export/import: The ExportGenesis function properly exports the Supply struct (code ref), and

InitGenesis properly imports it (code ref), ensuring supply accounting is preserved during chain

upgrades via genesis state transfer.

3. Versioned migration system: All migrations are registered via the Cosmos SDK’s

cfg.RegisterMigration (code ref), which ensures ordered, idempotent execution and prevents dupli

cate or out-of-order migrations that could corrupt state.

Informal Systems © 2026 14

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L445
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L230-L238
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L230-L232
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L265-L269
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/migrations/v13/store.go#L57-L61
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/genesis.go#L127-L130
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/genesis.go#L76-L79
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/module/module.go#L115-L150

Zenrock Q1 2026 Security Audit Report

Property HUSH-07: If a voucher record exists with commitment C,

then commitment C exists in the Merkle tree at some leaf position,

and sum of all spendable voucher amounts equals (total shielded) -

(total unshielded) - (total fees collected)

• Threat a: Voucher record created in state but corresponding commitment not inserted into Merkle tree

The threat does not hold.

‣ x/hush: The voucher record is created in createVoucherInternal and stored in the state

through SetVoucher. Note that before SetVoucher, the corresponding commitment is added

through AddCommitment that calls the Merkle contract. If AddCommitment fails to be added,

createVoucherInternal returns immediately without creating the voucher in the state. Therefore, in

normal conditions, this threat holds.

• Threat b: Commitment inserted into the Merkle tree, but no corresponding voucher record created

The threat does not hold.

‣ x/hush: From the x/hush module perspective, the same applies as in Threat a. There is a small differ

ence, in case a voucher is also created during shield events that takes place in PreBlocker, potentially

having a successful AddCommitment but then failing to add the voucher in the store, and hence this shield

event is omitted even though a commitment was added due to it. This can only happen due to storage

corruption which we assume is not the case or if the len(commitment) != 32 but if this was the case

AddCommitment would also fail.

• Threat c: Same commitment inserted multiple times at different leaf positions, allowing multiple spends via

different Merkle paths

The threat does not hold but can lead to issues.

‣ x/hush: Although the same commitment can be inserted multiple times at different leaf positions, it does

not allow for multiple spends.

The same commitment can be inserted multiple times if a user initiates two shielding events with the

exact same commitment that are both in processShieldEvents. During the first processing of the shield

event, a voucher would be created for this commitment. Then, when the second shield event is being

processed (this can happen because it has a different shieldEvent.TxId and shieldEvent.LogIndex

than the first shield event), it will also create a voucher for the exact same commitment, and furthermore

overwrite CommitmentToVoucherStore the nextID of this commitment. Nevertheless, double spending

is not possible because the nullifier for this commitment can only be used once. When the user spends

one voucher, the nullifier is marked as spent and the user cannot use the other voucher.

The same issue can potentially appear in Unshield and ShieldedTransfer but would need extra effort

from the user to create NewBalanceCommitment.

Due to the above we can have erroneous supply stats and bad UX (see finding “Erroneous supply stats”).

• Threat d: Commitment insertion reports success, but the internal tree state is not updated correctly

Informal Systems © 2026 15

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L423
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L391
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L393
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L46
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci.go#L433
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L75
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L272
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go#L168
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L24
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L44-L68
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L26
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L26
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L26
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L26
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L432

Zenrock Q1 2026 Security Audit Report

The threat does not hold.

‣ miden-merkle: The commitment insertion process in the miden-merkle contract is protected by

CosmWasm’s transaction atomicity guarantees, which ensure that tree state cannot become inconsis

tent with reported success.

When the sudo_add_commitment() function executes, all storage operations write to a cached state

rather than directly to persistent storage. If any operation in this sequence fails, the entire transaction is

rolled back atomically, discarding all cached changes and returning an error to the caller.

Furthermore, the tree update algorithm itself is mathematically correct, implementing proper parent hash

computation with correct sibling selection and node position encoding that prevents collisions.

Since the keeper receives an error if anything fails and the contract only returns success after all state

has been committed atomically, there is no scenario where commitment insertion can report success

with incorrectly updated internal tree state.

• Threat e: State migration, upgrade, or error recovery causes permanent desynchronization between

voucher records and the tree

At the current state the threat does not hold.

‣ x/hush: In case of an exported genesis file, the Merkle-tree state is exported and is taken care of by

x/wasm. For the x/hush module, the genesis exports and imports the whole state as expected. Note

that GenesisState does not include CommitmentToVoucherStore but this state is re-constructed during

InitGenesis.

Property HUSH-08: Only a user who knows the complete commit

ment pre-image (note secret, randomness, amount, asset) and holds

the spending key from which the nullifier key is derived can spend

that commitment

• Threat a: Circuit fails to cryptographically bind nullifier_key and note_secret to the same root

spending_key

The threat holds. The circuit derives nullifier_key from spending_key (code ref) but loads all

note_secret (an randomness) values for balance note (code ref) and incoming notes (code ref) directly

from the advice stack, without verifying they were derived from the same spending_key. Since nullifiers

are computed as hash(nullifier_key, commitment) where commitment depends on note_secret (and

randomness), an attacker can use the same commitment with different spending keys to generate different

nullifiers, bypassing double-spend protection. See finding “Note secret not cryptographically bound to

spending key” for more details.

• Threat b: Circuit allows the prover to use arbitrary nullifier_key not derived from the spending_key that

created the commitment

The threat does not hold. The circuit correctly enforces that nullifier_key is de

rived from spending_key. The circuit loads spending_key from advice (code ref),

Informal Systems © 2026 16

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/app/app.go#L1059
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/genesis.go
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L43-L54
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L43-L54
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/genesis.go#L11
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/genesis.go#L52
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L349
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L361
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L432
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L324

Zenrock Q1 2026 Security Audit Report

and it executes exec.derive_nullifier_key (code ref) which deterministically com

putes nullifier_key = hash(spending_key || NULLIFIER_KEY_DOMAIN) (code ref). The derived

nullifier_key is then stored in memory and used for all nullifier computations via

exec.compute_nullifier. However, as explained in Threat a, the circuit does allow arbitrary

spending_keys to be provided, which, combined with the fact that note_secret is not verified to be derived

from that same spending_key, enables the double-spend vulnerability previously identified.

• Threat c: Circuit allows spending with knowledge of the pre-image but without proving ownership of the

corresponding spending_key

The threat holds. The circuit only verifies that the prover knows the commitment pre-image (note_secret,

randomness, amount, seq, asset) and that this commitment exists in the Merkle tree. It never verifies that the

provided spending_key has any relationship to the commitment being spent. This is precisely the double-

spend vulnerability identified earlier: knowing the commitment pre-image is sufficient to spend, and there’s

no cryptographic proof of spending_key ownership over that specific commitment.

• Threat d: nullifier_key derivation uses weak domain separation (e.g., missing or non-unique separators,

separators that allow collisions)

The threat does not hold. The nullifier key derivation uses strong, collision-resistant domain separation. The

circuit implementation uses a unique constant NULLIFIER_KEY_DOMAIN = 7310582938571023456 (code

ref).

• Threat e: Note secret derivation uses weak domain separation (e.g., missing or non-unique separators,

separators that allow collisions)

The threat does not hold. The note secret derivation uses strong, collision-resistant domain separation

with unique separators for each purpose. The implementation uses two distinct derivation paths: (1) Bal

ance notes derive note_secret = hash(spending_key || "zenrock.hush.balance_note.v1" || seq)

(code ref), and (2) Stealth transfers derive

note_secret = hash(ECDH_shared_secret || "zenrock.hush.note_secret.v1") (code ref).

• Threat f: Message sender validation insufficient, allowing user A to submit valid proof generated by user

B and spend B’s commitment

The threat holds. The recipient_address (Solana destination) of MsgUnshield (code ref) is not crypto

graphically bound to the ZK proof, allowing proof interception and fund redirection attacks. For unshield

operations, the circuit sets recipient_commitment = zeros (code ref), and the recipient_address string

field is never included in the outputs_commitment (code ref). The chain only validates the recipient address

for base58 format, not cryptographic binding to the proof.

If Alice generates a valid ZK proof to unshield funds to her Solana address and Bob intercepts the proof

bytes, then Bob can construct a new MsgUnshield transaction with: (1) his own address as creator, (2)

Alice’s ZK proof, (3) Alice’s nullifiers/commitments/amounts (unchanged), (4) Bob’s Solana address as

recipient_address. The proof verification succeeds because it only validates nullifiers, commitments,

and amounts (the recipient address is completely unconstrained). The unshield proceeds and funds are

sent to Bob’s Solana address instead of Alice’s. We have reported this issue in finding “Unshield recipient

address not cryptographically bound to ZK proof”.

Informal Systems © 2026 17

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L349C5-L349C30
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L184-L191
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L130
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L130
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L405
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/proto/zrchain/hush/tx.proto#L66
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L175
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go#L462-L501

Zenrock Q1 2026 Security Audit Report

• Threat g: Nullifier extracted from proof outputs does not match the nullifier being marked as spent in state,

allowing commitment to remain spendable

The threat does not hold. The nullifier marked as spent in the state is cryptographically bound to the ZK

proof and cannot differ from the nullifier proven in the circuit.

The circuit computes the balance nullifier as hash(nullifier_key, commitment) and stores it in memory

(code ref). This nullifier is then included in the outputs_commitment computation (code ref), which

becomes a public input to the verifier. When the chain processes the transaction, it recomputes

the outputs_commitment using msg.Nullifier from the message (code ref MsgUnshield, code ref

for MsgShieldedTransfer) and verifies the proof against this commitment. If an attacker attempts to

provide a different nullifier in msg.Nullifier than what the circuit computed, the chain’s recomputed

outputs_commitment will not match the one in the proof, causing verification to fail. Only after successful

verification does the chain mark msg.Nullifier as spent, ensuring that the nullifier marked in the state is

exactly the one that was cryptographically proven.

Similarly, for incoming notes, their nullifiers are included in the public outputs (code ref), and if proof

verification succeeds, the nullifiers are marked as spent.

Property HUSH-09: If a user has spending key SK, then only holders

of keys derived from SK can decrypt voucher amounts: spending key

holder (full access), full viewing key holder (decrypt only, no spend),

incoming viewing key holder (decrypt received only), no key holder

(see only encrypted data)

• Threat a: Encryption key derivation vulnerable to collision attacks, related-key attacks, or length extension

attacks due to weak key derivation function construction (e.g., single SHA256 instead of HKDF, missing

salt/context, insufficient iterations)

The threat does not hold. Currently, all inputs to rpo_hash_internal operate on fixed-length inputs (e.g.,

32-byte shared secrets) or on concatenations where any variable-length component is followed by a fixed,

non-zero-terminated domain separator. As a result, the zero-padding used in the byte-to-field encoding

does not introduce ambiguity or collision risk under the existing design assumptions.

• Threat b: ECDH shared secret vulnerable to small subgroup attacks or brute-force due to: (1) received

public keys not validated (low-order points, curve membership), or (2) generated private keys weak

(insecure RNG, insufficient entropy)

The threat holds, see finding “Missing shared secret validation”.

When generating the shared secret with the public key, if it is all-zeros, then the encrypted value can then

be decrypted using any private key combined with the all-zeros shared secret.

• Threat c: Authenticated encryption (ChaCha20-Poly1305) fails to verify tags, uses predictable or non-

unique nonces, or leaks timing information

The threat does not hold. Decryption errors are handled without leaking information, and there are no fast/

slow paths depending on the result. Nonces and keys combinations are unique or generated randomly.

Informal Systems © 2026 18

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L388
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L630
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L179
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L633
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L655-L727

Zenrock Q1 2026 Security Audit Report

• Threat d: Key hierarchy vulnerable to privilege escalation (deriving a higher privilege key from a lower

privilege key) due to reversible key derivation (e.g., XOR with constants, weak hash, algebraic relations)

instead of one-way cryptographic functions

The threat does not hold. The key derivations follow the key hierarchy described where the

wallet_signature is the highest privilege key, the spending key is derived from the wallet_signer and

the other keys can be derived from the spending_key.

• Threat e: Circuit public inputs expose private information (amounts, note secrets, randomness, or other

sensitive data) that should remain encrypted

The threat does not hold. The protocol uses only 8 field elements as public inputs: merkle_root (4 felts)

and outputs_commitment (4 felts) (code ref). All sensitive data (amounts, note secrets, randomness,

spending keys, asset type) are passed as private advice inputs and never exposed in public inputs. The

outputs_commitment is an RPO hash binding public outputs (nullifiers, commitments, fee, and recipient

amount) but does not reveal the underlying values. For shielded transfers, privacy is maximized by

setting recipient_amount = 0 in the outputs_commitment (code ref), with the actual amount encrypted

in encrypted_recipient_amount. For unshields, the amount and asset are intentionally public since the

unshield recipient address is visible on Solana anyway. No note secrets, randomness, or spending keys

appear in public inputs.

Property HUSH-10: If a user performs a shielded transfer of amount

Q from commitment C1 to recipient R, observers cannot determine

recipient’s identity, amount Q being transferred, or which commit

ment C1 is being spent

• Threat a: Recipient identity revealed through on-chain data (recipient address, recipient public key, non-

unique ephemeral keys)

‣ x/hush: The threat does not hold. Assuming the user performs shielded transfers carefully (i.e.,

sender_randomness is random and not re-used across transfers and the user correctly derives the

ephemeral key), then this threat does not hold. In such a scenario, there is no way for an adversary to

look at EmphemeralPubKey to infer something meaningful (e.g., transfers stem from the same sender).

Additionally, the RecipientCommitment is just as hash, as well as the recipient, asset, etc.

• Threat b: Transfer amount revealed through on-chain data (plaintext amounts, predictable encryption)

‣ x/hush: The threat does not hold. As with Threat a, if we make the same assumption, the transfer amount

is encrypted in EncryptedRecipientAmount.

• Threat c: Input commitment (sender) revealed through on-chain data

‣ x/hush: The threat does not hold as long as MsgShieldedTransfer.Creator is not re-used. Additionally,

the sender reveals their Nullifier but it is unlinkable to the commitment and even if someone could

correlate a nullifier to its original voucher, they would not learn who actually sent this amount.

Informal Systems © 2026 19

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L18-L24
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3599
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L741
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L748-L753
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L740

Zenrock Q1 2026 Security Audit Report

Property HUSH-11: All protocol components correctly integrate with

Miden VM and produce cryptographic results (commitments, nulli

fiers, hashes, Merkle paths) that are consistent with Miden VM circuit

behavior

• Threat a: Hash computations (commitments, nullifiers, Merkle nodes) in off-circuit implementations pro

duce different values than the circuit’s hmerge / hperm operations for identical inputs, causing commitment/

nullifier mismatches

The threat does not hold. For both the implementation of vm_hmerge (hush-wasm) (code ref) and

hmerge_circuit (miden-merkle) (code ref), when performing the hash of two words hash(A, B)

both Miden VM’s hmerge and the off-circuit implementation produce a stack-ordered result:

[result[3], result[2], result[1], result[0]] (this represents hash(A, B) in stack order). The fol

lowing table summarizes the steps of both operations for hashing A and B (with B on the top of the stack).

‣ Step 0: Input format

– Miden VM hmerge:

• Stack: [B[3], B[2], B[1], B[0], A[3], A[2], A[1], A[0]]

• Words in stack order

– hmerge_circuit(B, A) / vm_hmerge(B, A):

• Function receives Word structs:

‣ B = [B[3], B[2], B[1], B[0]] (stack order)

‣ A = [A[3], A[2], A[1], A[0]] (stack order)

‣ Step 1: Convert to logical order

– Miden VM hmerge:

• Automatically reverses during stack→state mapping:

‣ B_stack → B_logical = [B[0], B[1], B[2], B[3]]

‣ A_stack → A_logical = [A[0], A[1], A[2], A[3]]

– hmerge_circuit(B, A) / vm_hmerge(B, A):

• Explicitly reverses each word:

‣ b_logical = [B[0], B[1], B[2], B[3]]

‣ a_logical = [A[0], A[1], A[2], A[3]]

Note:

Informal Systems © 2026 20

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L205
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L75

Zenrock Q1 2026 Security Audit Report

a_on_top (param) = B

b_on_bottom (param) = A

‣ Step 2: Build RPO state

– Miden VM hmerge:

• Constructs 12-element state: [A_logical, B_logical, zeros]

• Applies RPO permutation

– hmerge_circuit(B, A) / vm_hmerge(B, A):

• Calls Rpo256::merge([A_logical, B_logical])

• Constructs same state [A_logical, B_logical, zeros]

‣ Step 3: Extract result

– Miden VM hmerge:

• Result in logical order: [result[0], result[1], result[2], result[3]]

– hmerge_circuit(B, A) / vm_hmerge(B, A):

• Rpo256::merge returns result in logical order: [result[0], result[1], result[2], result[3]]

‣ Step 4: Convert to stack order

– Miden VM hmerge:

• Automatically reverses during state→stack mapping:

result_logical → result_stack = [result[3], result[2], result[1], result[0]]

– hmerge_circuit(B, A) / vm_hmerge(B, A):

• Explicitly reverses result [result[3], result[2], result[1], result[0]]

‣ Output format

– Miden VM hmerge:

• Stack: [result[3], result[2], result[1], result[0]]

• Result in stack order

– hmerge_circuit(B, A) / vm_hmerge(B, A):

• Returns Word: [result[3], result[2], result[1], result[0]]

• Result in stack order

Informal Systems © 2026 21

Zenrock Q1 2026 Security Audit Report

• Threat b: Merkle tree implementation in miden-merkle contract uses a different hash function, node

ordering, or path format than the circuit’s verify_merkle_path, causing valid proofs to be rejected

The threat does not hold. The miden-merkle contract uses the function hash_nodes to hash intermediate

nodes and the root. This function internally uses hmerge_circuit, which produces the same result as

hmerge. The Merkle path returned by the query query_merkle_path (code ref) consists of the leaf value

and a vector of siblings (starting from the sibling of the leaf) that are iteratively hashed to calculate the root.

This is consistent with the implementation of verify_merkle_path (code ref). The siblings are encoded as

4 field elements in stack order (big endian).

• Threat c: Public input ordering or encoding for proof generation/verification does not match circuits’

expectations

The threat does not hold. The ordering of public inputs is the same in hush-wasm (code ref) and in x/hush

(code ref).

• Threat d: Commitment computation in hush-wasm differs from circuit computation

The threat does not hold. Commitment computation in functions compute_commitment_internal (code

ref) and compute_balance_commitment_internal (code ref) of hush-wasm (code ref) produce the same

result as the circuit’s commitment computation (code ref). The commitment is logically computed as

hash(hash(note_secret, randomness), [asset, 0, sequence, amount]) and the implementations in

hush-wasm performs the same steps as in the circuit:

‣ Calculate step1 by applying hmerge on a stack with [randomness, note_secret] with field elements of

both words in stack order (big endian).

‣ Calculate commitment by applying hmerge on a stack with [amount, sequence, 0, asset, step1].

• Threat e: Commitment computation in miden-merkle differs from circuit computation

The threat holds. Commitment computation in query query_compute_commitment of

miden-merkle (code ref) does not produce the same result as the circuit’s com

mitment computation (code ref). The commitment should be logically computed as

hash(hash(note_secret, randomness), [asset, 0, sequence, amount]) but the implementation in

miden-merkle performs the following steps:

‣ Calculate step1 by applying hmerge on a stack with [randomness, note_secret] with field elements of

both words in stack order (big endian).

‣ Calculate commitment by applying hmerge on a stack with [0, 0, asset, amount, step1] instead of

[amount, sequence, 0, asset, step1].

We have documented this issue in finding “Commitment field ordering inconsistency”.

• Threat f: Nullifier computation in hush-wasm differs from circuit computation

The threat does not hold. Nullifier computation in function compute_nullifier_v2_internal in hush-wasm

(code ref) produces the same result as the circuit’s nullifier computation (code ref). The nullifier is logically

computed as hash(nullifier_key, commitment) and the implementation in hush-wasm performs the

Informal Systems © 2026 22

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L498
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L214
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3644-L3652
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L361-L372
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L276
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L276
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L435
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L276
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L360-L383
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L435
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L360-L383
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L309C4-L309C33
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L198-L206

Zenrock Q1 2026 Security Audit Report

same step as in the circuit: Applies hmerge on a stack with [commitment, nullifier_key] with field

elements of both words in stack order (big endian).

• Threat g: Nullifier computation in miden-merkle differs from circuit computation

The threat does not hold. Nullifier computation in query query_compute_nullifier in miden-merkle (code

ref) produces the same result as the circuit’s nullifier computation (code ref). The nullifier is logically

computed as hash(nullifier_key, commitment) and the implementation in miden-merkle performs the

same step as in the circuit: Applies hmerge on a stack with [commitment, nullifier_key] with field

elements of both words in stack order (big endian).

• Threat h: Field element reduction or modular arithmetic differs between components (Goldilocks field

modulus 2^64 - 2^32 + 1 not consistently applied)

The threat holds. Not all locations in hush-wasm, miden-merkle and miden-verifier that create a field

element from a u64 (with Felt::new()) reduce the input value modulo Goldilocks by using the function

to_field_safe (code ref). For example, the implementation of bytes_to_word in miden-merkle doesn’t

call to_field_safe (code ref) while bytes_to_word_internal in hush-wasm does (code ref). See finding

“Unsanitized u64 as field element”.

• Threat i: Domain separation constants (NULLIFIER_KEY_DOMAIN, NOTE_SECRET_DOMAIN, etc.) not

consistent across Rust and assembly

The threat does not hold. The function derive_nullifier_key_circuit_internal in hush-wasm (code ref)

uses the same domain separator constant (code ref) as the circuit (code ref). The circuit does not compute

the note secret and thus does not use its domain separator.

Property HUSH-12: The Merkle tree implementation provides sound

membership proofs: valid proofs are accepted for leaves in the tree,

and no valid proof exists for leaves not in the tree; the tree preserves

insertion order and historical roots

• Threat a: Hash function used in the Merkle tree is not collision-resistant, allowing an attacker to find two

different commitments with the same hash

The threat does not hold. The Merkle tree uses RPO256 (Rescue Prime Optimized) as its hash function,

which provides strong collision resistance guarantees.

• Threat b: Merkle tree function is not second preimage resistant

The threat holds, but it is mitigated. While the Merkle tree implementation is theoretically vulnerable

to second preimage attacks—intermediate node hashes are observable and could be targeted to find

alternate paths—this threat is fully mitigated by the ZK circuit constraints and does not pose a practical

security risk.

• Threat c: Given a commitment in the tree, the Merkle path generation fails or produces an invalid path that

does not verify against the root

Informal Systems © 2026 23

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L464
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L464
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L198-L206
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L129
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L108
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L36
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L2964
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L2927
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L187
https://docs.rs/miden-crypto/latest/miden_crypto/hash/rpo/struct.Rpo256.html

Zenrock Q1 2026 Security Audit Report

The threat does not hold. The Merkle path generation implementation cannot produce invalid paths under

normal operation. All commitments are validated to be exactly 32 bytes before storage (code ref), all nodes

are stored via word_to_bytes() which always produces 32 bytes (code ref), and missing entries in sparse

tree positions correctly return computed empty subtree hashes rather than errors (code ref 1, code ref

2). The only theoretical error path in bytes_to_word (code ref) cannot occur given these validation guar

antees. The threat does not hold and would only manifest in cases of storage corruption or catastrophic

database failure affecting the entire blockchain node.

• Threat d: Given a commitment not in the tree, a Merkle path can be constructed that falsely verifies against

the root

The threat does not hold. An attacker cannot provide fake proofs on fake roots because the root validation

mechanism at x/hush requires all Merkle roots to be either the current root or present in ROOT_HISTORY

(code ref). Roots can only be added to history through the Sudo-protected AddCommitment endpoint (code

ref), which is exclusively callable by the x/hush module during legitimate shield event processing. Even if

an attacker could mathematically generate a valid ZK proof against an arbitrary root value, that root would

fail the IsValidMerkleRoot check and the transaction would be rejected.

• Threat e: Tree does not handle edge cases correctly (empty tree, single leaf, full tree, tree depth limits)

The threat does not hold. The Merkle tree implementation correctly handles all edge cases through explicit

validation and proper empty subtree computation. Empty trees are properly initialized by computing

empty_leaf() = hash(0) and hashing it with itself depth times (code ref). Sparse tree positions use the

same recursive formula to compute empty subtree hashes at any level (code ref), ensuring consistency

between initialization and path generation. Full tree conditions are explicitly prevented with capacity

checks that return TreeFull error when next_leaf_index >= 2^depth (code ref).

• Threat f: Insertion order is not preserved or deterministic, causing different nodes to compute different

roots for the same commitment set

The threat does not hold. The Merkle tree insertion is fully deterministic and order-preserving. Each

commitment is inserted at the position next_leaf_index (code ref), which is a monotonically increasing

counter stored in the tree state and incremented after each insertion (code ref). The insertion algorithm

is deterministic: given a leaf index, it computes the parent hash using a fixed formula based on whether

the index is odd (right child) or even (left child) (code ref), stores all intermediate nodes at deterministic

positions (code ref), and updates the root.

• Threat g: Historical root preservation fails, causing valid proofs with recent historical roots to be incorrectly

rejected

The threat holds. The contract stores historical roots using block.height as the key in the ROOT_HISTORY

map (code ref). When multiple commitments are added within the same block (e.g., multiple

MsgShieldedTransfer or MsgUnshield transactions in a single block), each call to sudo_add_commitment

updates the Merkle tree root and attempts to save it to ROOT_HISTORY with the same block.height key.

This causes intermediate roots to be overwritten (only the final root from the last commitment addition in

that block is preserved in history). Users who generate proofs against intermediate roots (created earlier

in the same block) will have their proofs rejected during IsValidRoot checks, even though those roots

were valid at the time the commitment was added. We have reported this issue in finding “AddCommitment

overwrites”.

Informal Systems © 2026 24

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L230-L232
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L41-L48
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L298
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L307
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L307
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L30
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L161-L168
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L214
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L214
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L98-L105
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L306-L310
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L220-L228
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L234
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L277
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L245-L260
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L267-L268
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L272

Zenrock Q1 2026 Security Audit Report

• Threat h: Root history retention policy not enforced, allowing roots to be dropped before the configured

period or kept beyond limits

The threat does not hold. The contract intentionally separates the validation window (controlled by a

configurable HISTORY_SIZE) from storage retention (unlimited). The execute_update_history_size admin

function allows runtime tuning of the proof validity window without requiring contract migration. While this

causes unbounded storage growth, it doesn’t affect query costs. A recommended root history cleanup

mechanism is detailed in the “Miscellaneous code improvements” section.

Property HUSH-13: All message fields are validated before process

ing

• Threat a: MsgUnshield message inputs are not properly validated before processing

The threat holds. MsgUnshield message inputs are not properly validated before processing. A finding

has been reported “Missing message validation in Unshield handler”.

• Threat b: MsgShieldedTransfer message inputs are not properly validated before processing

The threat holds. MsgShieldedTransfer message inputs are not properly validated before processing. A

finding has been reported “Missing inputs validation in Unshield handler”.

• Threat c: MsgUpdateParams message inputs not properly validated before processing

The threat does not hold. The UpdateParams handler validates authority via CheckAuthority (code ref),

then calls SetParams which is expected to perform internal validation. Authority validation prevents unau

thorized parameter modifications.

• Threat d: SudoMsg::AddCommitment message inputs not properly validated before processing

The threat holds. The sudo_add_commitment() function (code ref) implements basic structural validation

by checking that commitments are exactly 32 bytes and that tree capacity is not exceeded, preventing

length-based attacks and overflow conditions. However, the function lacks field element validation

for the commitment bytes. When converting the 32-byte commitment to four field elements via the

bytes_to_word() function (code ref), the code uses Felt::new(u64::from_le_bytes(arr)) (code ref)

which does not validate that the resulting u64 values are less than the Goldilocks field modulus. While

Felt::new() may internally reduce values modulo p, accepting out-of-range inputs creates a trust bound

ary issue where the contract accepts commitments that were not properly validated during their off-chain

generation, potentially leading to inconsistencies between on-chain and off-chain hash computations if

the client’s commitment generation uses different validation logic. This issue has been reported in the

“Unsanitized u64 as field element” finding.

Another validation gap is the absence of an explicit check rejecting commitments that equal the

empty_leaf() value (RPO hash of [0,0,0,0]), which could theoretically cause confusion in Merkle proof

verification if such a collision occurred, though the cryptographic improbability makes this purely a

defense-in-depth consideration rather than a practical security concern. A recommendation for this issue

has been explained in the “Miscellaneous findings on CW contracts” section.

• Threat e: ExecuteMsg::UpdateHistorySize message inputs are not properly validated before processing

Informal Systems © 2026 25

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L32-L34
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L214
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L28
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L36

Zenrock Q1 2026 Security Audit Report

The threat does not hold. The only input parameter that is provided to this function is the new_size: u32

parameter (code ref), and the only present validation is a check that this parameter does not equal zero.

This validation is sufficient. Since this function is only callable by the contract admin, the admin can

increase or decrease the HISTORY_SIZE storage variable.

By doing so, the admin modifies how many of the last ROOT_HISTORY entries can be queried by the user.

The ROOT_HISTORY storage variable stores the historical root hashes, while the HISTORY_SIZE determines

how many of them can be queried and used to submit proofs for.

• Threat f: ExecuteMsg::UpdateAdmin message inputs are not properly validated before processing

The threat holds. From the validation standpoint, the only input parameter that is provided is the

new_admin: Option<String> parameter (code ref), which is properly validated. It follows the best prac

tices by being of String type, and by being validated via the deps.api.validate() function. There are

no other validations necessary for this input parameter.

Even though an invalid new_admin parameter cannot be provided, the whole admin update process is

implemented in the execute_update_admin() does not follow the best practices. The process is imple

mented in a single step, where the admin only overwrites its address by adding the new admin, which

does not follow the best practices regarding the admin update process.

The admin is assumed to be a trusted and reliable source, but operational errors can still happen.

To mitigate the risk of administrative lockout and to ensure that admin updates are both valid and

explicitly acknowledged, the contract should use the two-step ownership transfer pattern provided by the

cw-ownable library.

The library enforces a proposal → acceptance workflow before ownership changes are finalized. It

ensures that no contract can become ownerless or accidentally locked due to operational errors.

This issue has been reported in the “Lack of confirmation during admin updates” finding.

• Threat g: SudoMsg::Verify message inputs are not properly validated before processing

The threat holds. The hash parameter is adequately protected by RpoDigest::read_from_bytes(), which

enforces the exact 32-byte size requirement and rejects malformed inputs, making additional validation

redundant.

The inputs parameter is constructed deterministically by the keeper to always contain exactly 8

elements, and while Miden’s StackInputs::try_from_ints() (code ref) silently pads any input size up

to 16 elements with zeros, this behavior cannot be exploited maliciously. However, this silent padding

mechanism can mask programming bugs in the Go layer, leading to cryptic verification failures that are

difficult to debug. A recommendation for this issue has been explained in the “Miscellaneous findings on

CW contracts” section.

The proof parameter accepts arbitrarily large base64-encoded strings without size bounds, representing

a fail-slow inefficiency where oversized proofs waste gas during decode and deserialization before

eventually failing verification. While this creates user friction for accidental misuse (paying unnecessary

gas fees for malformed proofs), it does not constitute a practical DoS vector since attackers must pay for

all consumed gas, making the attack economically self-defeating.

Informal Systems © 2026 26

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L161
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L188
https://crates.io/crates/cw-ownable
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-verifier/src/contract.rs#L77

Zenrock Q1 2026 Security Audit Report

The outputs parameter suffers from a confusing API design using a nested Vec<Vec<u64>> structure when

only a single Vec<u64> is needed when calling the StackOutputs::new() function (code ref), and it only

utilizes the first element while silently discarding the rest, though this too is limited to causing developer

confusion rather than security issues. A recommendation for this issue has been explained in the “Miscel

laneous findings on CW contracts” section.

Adding explicit size validation for inputs (expecting exactly 8 elements), enforcing an upper bound on

proof size, and either flattening the outputs structure or validating that only one array is provided would

significantly improve code robustness and debugging experience.

• Threat h: InstantiateMsg message inputs are not properly validated before processing

The threat holds. The instantiate() function (code ref) does not validate the tree_depth input parameter,

which can lead to the parameter being set to a value ≥ 64. This can then cause overflows in the downstream

execution when calling max_tree_capacity() (code ref) and node_position() (code ref) functions, which

prevents any commitments from being added. This issue has been reported in the “Missing tree depth

validation makes the contract unusable” finding.

Another problem is that the instantiate() function does not verify that the history_size is not zero. This

check is explicitly implemented in the execute_update_history_size() function.

Property HUSH-14: Queries are properly constructed with valid para

meters, execution errors are handled correctly, and responses are

correctly interpreted by the caller

• Threat a: QueryMsg::RpoHashCircuit constructed with invalid parameters, execution errors not handled,

or response misinterpreted by the caller

The threat does not hold. RpoHashCircuit correctly sets its parameters and returns the response from the

Merkel contract. Specifically, RpoHashCircuit is called from ComputeOutputsCommitmentV7 that generates

an inputs slice with 112 uint64 that is passed to RpoHashCircuit and eventually to the contract that uses

those values without returning an error.

• Threat b: QueryMsg::GetMerklePath constructed with invalid parameters, execution errors not handled,

or response misinterpreted by the caller

The threat does not hold. The GetMerklePath query gets a LeafIndex as a parameter. This leaf index stems

from the voucher retrieved in MerklePath and this voucher was created here so the leaf index is correctly

set and the leaf exists (so we are not in this case). The response from the query is correctly converted and

used by the MerklePath caller.

• Threat c: QueryMsg::IsValidRoot constructed with invalid parameters, execution errors not handled, or

response misinterpreted by the caller

The threat does not hold under specific cases. IsValidRoot is called from

IsValidMerkleRootFromContract and gets as a parameter a Root and returns whether it is valid or not.

The provided parameter is checked that it has the right length in Unshield and in ShieldedTransfer.

Informal Systems © 2026 27

https://github.com/0xMiden/miden-vm/blob/next/core/src/stack/outputs.rs#L35
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L92
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L18
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L318
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go#L422
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go#L462
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L379-L388
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L379-L388
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go#L264
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/query.go#L360
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L432
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L501
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go#L289-295
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/query.go#L379
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/query.go#L379
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L338
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go#L305
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L490
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L57
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L506

Zenrock Q1 2026 Security Audit Report

❗Note that IsValidRoot might miss some roots if those are overwritten due to AddCommitment (we

describe this issue in more detail in finding “AddCommitment overwrites”).

• Threat d: QueryMsg::GetRoot execution errors not handled or response misinterpreted by the caller

The threat does not hold. GetRoot does not take any parameters and loads the tree state storage and

extracts from that state the root, so it operates like GetTreeState with the addition that the state (that

is instantiated) of the root is also returned. GetMerkleRoot that queries GetRoot correctly retrieves the

response and returns the root.

• Threat e: QueryMsg::GetTreeState execution errors not handled or response misinterpreted by the caller

The threat does not hold. GetTreeState does not take any parameters and loads the tree state from storage

and the state is initialized so loading of the tree state succeeds. GetMerkleTreeStateFromContract that

queries the tree state correctly retrieves the response and sets the corresponding MerkleTreeState fields

and in case of errors, those are handled (and here).

• Threat f: QueryMsg::GetVerifResult execution errors not handled or response misinterpreted by the caller

The threat does not hold. GetVerifResult does not take any parameters and simply returns the

result stored in deps.storage. GetVerifResult is called from VerifyZKProof after the proof has been

validated and the result has already been stored. Note that in case of a successful verification

"Execution verified!" is returned, which is exactly the same string against which VerifyZKProof

performs the check.

Property HUSH-15: Wallet signatures used for key hierarchy deriva

tion are treated as secrets and never persisted, logged, or transmit

ted

• Threat a: Wallet signatures persisted to browser storage allowing extraction after the session ends

The threat does not hold. The current implementation of hush-wasm doesn’t use any persistent storage.

The functions in hush-wasm are pure functions without states. The wallet related relevant code is in web/

directory — which is out of scope.

• Threat b: Wallet signatures logged to console, debug logs, or error messages allowing exposure through

developer tools or log aggregation

The threat does not hold. The current implementation of hush-wasm does not log or output wallet signatures,

but errors should still be improved as mentioned in “Miscellaneous findings on hush-wasm” to ensure no

sensible data is exposed.

• Threat c: Wallet signatures transmitted over network (analytics, telemetry, API calls) allowing interception

or server-side logging

The threat does not hold. The current implementation of hush-wasm only uses pure functions without any

side effects or states. So, there is no network access. The related relevant code is in web/ directory —

which is out of scope.

Informal Systems © 2026 28

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L325
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L346
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L114
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L326
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L351
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L114
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go#L247-L248
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go#L253
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-verifier/src/contract.rs#L113
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-verifier/src/contract.rs#L122
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-verifier/src/contract.rs#L122
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L746
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L738
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L738
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-verifier/src/contract.rs#L66
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-verifier/src/contract.rs#L99
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-verifier/src/contract.rs#L99
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L758

Zenrock Q1 2026 Security Audit Report

• Threat d: Wallet signatures not cleared from memory after spending_key derivation, leaving them acces

sible to memory inspection

The threat holds. The variable padded in fn rpo_hash_internal can hold the signature but

padded.zeroize() is not called.

• Threat e: Wallet signatures included in the serialized state for wallet recovery or session restoration

The threat does not hold. The wallet signatures are not included in serialized states.

Property HUSH-16: Private keys (spending, nullifier, viewing) are

never leaked through explicit channels (logging, network transmis

sion, plaintext storage) or side-channels (timing, cache behavior)

• Threat a: Private keys logged to console, debug logs, or error messages allowing exposure through

developer tools or log aggregation

The threat does not hold. The current implementation of hush-wasm does not log or output private keys,

but errors should still be improved as mentioned in “Miscellaneous findings on hush-wasm” to insure no

sensible data is exposed.

• Threat b: Private keys transmitted over network (analytics, telemetry, API calls, WebSocket connections)

allowing interception or server-side logging

The threat does not hold. hush-wasm doesn’t use any network access. Looking at the errors logs we don’t

find any private data leakage.

• Threat c: Private keys stored in plaintext in browser storage without encryption

The threat does not hold. The hush-wasm uses pure functions without persistent states.

• Threat d: Private keys exposed through JavaScript error stack traces or exception messages

The threat does not hold. The error strings are free of private data.

• Threat e: Private keys passed to third-party libraries or browser extensions with excessive permissions

The threat does not hold. hush-wasm is self contained without any unreasonable cargo dependencies. The

wasm blob will be compiled by code authors, whose responsibility is to make sure the cargo dependencies

are not compromised.

• Threat f: Private keys not cleared from memory after cryptographic operations, leaving them accessible

to memory inspection

The threat holds. As zeroize() is not called on all variables holding private key information when they are

not used anymore.

• Threat g: Secret-dependent comparisons (key verification, nullifier checks) not using constant-time algo

rithms, leaking information through timing differences

Informal Systems © 2026 29

Zenrock Q1 2026 Security Audit Report

The threat does not hold. There are few usages of ct_eq but there are still some (in)equalities that use Rust

native operations on Vec types. They will not execute in constant-time. But these are on public on-chain

data, including the existing eq_ct calls which return the matched data.

• Threat h: Cryptographic operations have variable execution time or secret-dependent branches, enabling

timing or cache-based side-channel attacks.

The threat does not hold. There are few cases where the loop terminated if some condition is met. But the

data are on-chain public data.

Informal Systems © 2026 30

Zenrock Q1 2026 Security Audit Report

Findings
Name Type Severity Status

Unshield recipient address not crypto

graphically bound to ZK proof
Design 4 - Critical Resolved

Note secret and randomness not crypto

graphically bound to spending key
Design 4 - Critical Resolved

Cross-asset theft vulnerability Design 4 - Critical Resolved

Circumventing fees Design 4 - Critical Resolved

Reusing balance nullifier Implementation 4 - Critical Resolved

Hardcoded note sequence limit Implementation 4 - Critical Resolved

Integer overflow in balance accumula

tion
Implementation 3 - High Resolved

Unsanitized u64 as field element Implementation 3 - High Resolved

Missing shared secret validation Implementation 3 - High Resolved

Stealth recovery mismatch Implementation 3 - High Resolved

Missing message validation in x/hush

handlers
Implementation 3 - High Resolved

Cross-chain linkability Design 2 - Medium Resolved

Mempool proof replay attack Implementation 2 - Medium Resolved

Missing tree depth validation makes the

contract unusable
Implementation 2 - Medium Resolved

Informal Systems © 2026 31

Zenrock Q1 2026 Security Audit Report

Name Type Severity Status

Lack of confirmation during admin up

dates
Implementation 2 - Medium Resolved

Nullifier key derivation mismatch in ac

count recovery
Implementation 2 - Medium Resolved

Erroneous supply stats Implementation 2 - Medium Resolved

Unbounded Merkle Depth (DoS vector) Implementation 2 - Medium Resolved

Unbounded JSON string (DoS vector) Implementation 2 - Medium Resolved

Missing host-side new balance valida

tion (DoS vector)
Implementation 2 - Medium Resolved

Silent recipient string truncation Implementation 2 - Medium Resolved

AddCommitment overwrites Design 2 - Medium Resolved

Missing check for leaf_index Implementation 1 - Low Resolved

Commitment field ordering inconsis

tency
Implementation 1 - Low Resolved

Duplicate vouchers compute wrong bal

ance
Implementation 1 - Low Resolved

Missing integer overflow check in x/hush

module
Implementation 0 - Informational Resolved

Note secret derivation inconsistency be

tween balance notes and vouchers
Implementation 0 - Informational Resolved

Duplicate incoming notes not validated Implementation 0 - Informational Resolved

Informal Systems © 2026 32

Zenrock Q1 2026 Security Audit Report

Name Type Severity Status

Viewing key lifetime leak Design 0 - Informational Resolved

Miscellaneous findings on hush-wasm Implementation 0 - Informational Reported

Miscellaneous findings in hush.masm Implementation 0 - Informational Resolved

Miscellaneous comments on x/hush Implementation 0 - Informational Reported

Miscellaneous findings on CW contracts Implementation 0 - Informational Resolved

Table 2: Identified Security Findings

Informal Systems © 2026 33

Zenrock Q1 2026 Security Audit Report

Unshield recipient address not cryptographically

bound to ZK proof
Severity Critical Exploitability High Status Resolved

Type Design Impact High

Involved artifacts

• zrchain/contracts/miden-circuits/hush.masm

Description

The protocol fails to cryptographically bind the recipient_address (Solana destination) to the ZK proof

for unshield operations. The circuit’s outputs_commitment includes the nullifiers, commitments, amounts,

and fees, but sets recipient_commitment = zeros for unshields (code ref). The recipient_address is

never included in the cryptographic proof: it’s only validated for base58 format after proof verification. This

allows anyone who obtains a valid proof to redirect the unshielded funds to an arbitrary Solana address by

constructing a new transaction with the same proof but a different recipient address.

Problem scenarios

• Mempool front-running: Alice broadcasts an unshield transaction with her proof and Solana address.

Bob monitors the mempool, extracts the proof bytes, and submits his own transaction with the same

proof but his Solana address, using higher gas to front-run Alice. The proof verifies successfully (all

cryptographically-bound fields match), and funds are sent to Bob’s address instead.

• Proof interception: Alice generates a proof on a compromised client or transmits it over an insecure

channel. An attacker intercepts the serialized proof before Alice broadcasts the transaction. The attacker

constructs their own MsgUnshield with the stolen proof, their own Cosmos signing key, and their own

Solana recipient address. The chain accepts this transaction since the proof is mathematically valid and

the recipient address is unconstrained.

Recommendation

Include the recipient_address in the circuit’s outputs_commitment by hashing it into the commitment

structure. The circuit should accept the recipient address (or its hash) as part of the public inputs and

include it in the outputs commitment calculation. This ensures that any modification to the recipient address

invalidates the proof. This requires circuit changes to accept and validate the recipient binding, and client

changes to include the recipient address when generating proofs.

Resolution

The development team has addressed this finding in PR #839.

Informal Systems © 2026 34

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L175
https://github.com/zenrocklabs/zenrock/pull/839

Zenrock Q1 2026 Security Audit Report

Note secret and randomness not cryptographically

bound to spending key
Severity Critical Exploitability High Status Resolved

Type Design Impact High

Involved artifacts

• zrchain/contracts/miden-circuits/hush.masm

Description

The circuit in hush.masm does not cryptographically bind note_secret and randomness values to the

spending_key, allowing complete bypass of double-spend protection. The circuit derives nullifier_key

from spending_key but loads all note_secret and randomness values directly from the advice stack without

verification (code ref).

• The circuit derives nullifier_key = hash(spending_key || NULLIFIER_KEY_DOMAIN) (code ref)

• Nullifiers are computed as nullifier = hash(nullifier_key, commitment) (code ref)

• Commitments depend on note_secret and randomness. However, note_secret and randomness values

are loaded via adv_push.4 for balance note (code ref) and incoming notes (code ref) with no verification

that they were derived from the same spending_key.

An attacker can use the same commitment with multiple different spending keys to generate unique nullifiers,

spending the same funds multiple times. Since the chain only tracks nullifiers (not commitments), each

spend appears valid.

Problem scenarios

Double-spend balance note

Prerequisites:

• Attacker controls a valid balance note with commitment C and amount A.

Attack steps:

1. Create spending key spending_key_1 → derive nullifier_key_1 → generate

nullifier_1 = hash(hash(nullifier_key_1, C).

2. Submit transaction, spend the funds.

3. Create another spending key spending_key_2 → derive nullifier_key_2 → generate

nullifier_2 = hash(hash(nullifier_key_2, C).

4. Submit second transaction with the same commitment C but different nullifier.

5. Chain accepts both transactions because nullifier_1 ≠ nullifier_2.

Informal Systems © 2026 35

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L361-L362
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L184-L191
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L198-L206
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L361-L362
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L432-L433

Zenrock Q1 2026 Security Audit Report

Impact: Attacker spends the same balance note twice (or more), creating unbacked tokens.

Double-spend of stealth transfer incoming notes

Prerequisites:

• Legitimate recipient receives a stealth transfer (commitment C is public on-chain)

• Recipient scans the transfer and learns the pre-image: note_secret, randomness, amount, asset, seq.

Attack steps:

1. Attacker (who knows the pre-image) generates spending_key_1 → derives nullifier_key_1 → com

putes nullifier_1 = hash(nullifier_key_1, C).

2. Attacker creates a valid proof with the known pre-image (note_secret, randomness, amount, asset, seq)

and Merkle path.

3. Chain accepts the proof and marks nullifier_1 as spent.

4. Attacker generates spending_key_2 → derives nullifier_key_2 → computes

nullifier_2 = hash(nullifier_key_2, C).

5. Attacker creates another proof for the same commitment C using the same pre-image but different

spending key.

6. Chain accepts because nullifier_2 is different from nullifier_1

7. Repeat with spending_key_3, spending_key_4, … unlimited times

Impact: Legitimate recipient can double-spend their own incoming notes unlimited times

Recommendation

The circuit must enforce that all note_secret (and ideally also randomness) values are cryptographically

derived from the spending_key rather than accepting them as arbitrary advice inputs. For balance notes and

new balance notes, the circuit should derive note_secret (and randomness if possible) internally instead of

loading from advice. For incoming notes from stealth transfers, the protocol might require a redesign: for

example, the sender could derive the note_secret (and randomness if possible) using the ECDH shared

secret and the recipient spending_key.

Resolution

The development team has addressed this finding in PR #846.

Informal Systems © 2026 36

https://github.com/zenrocklabs/zenrock/pull/846

Zenrock Q1 2026 Security Audit Report

Cross-asset theft vulnerability
Severity Critical Exploitability High Status Resolved

Type Design Impact High

Involved artifacts

• zrchain/x/hush/keeper/merkle.go

• zrchain/x/hush/keeper/msg_server.go

Description

The protocol’s circuit architecture contains a security vulnerability that allows an attacker to unshield tokens

as a different asset type than originally shielded. This enables cross-asset theft attacks where one asset’s

vault can be drained using a proof generated for a completely different asset.

The root cause is that the asset type is neither verified either in the circuit or the Unshield message handler.

Root causes:

1. Asset not bound to proof: The asset type was included in V6′s public inputs but was dropped in V7

(likely due to the 8-element stack limit). The msg.Asset field is only used after proof verification completes,

meaning the verifier never checks which asset the proof was actually generated for.

2. Global supply tracking: The TotalShielded supply counter is tracked globally across all assets,

not per-asset. This means a valid unshield of “100 units” passes the supply check regardless of which

asset those units belong to—allowing an attacker to drain any vault as long as the total global supply is

sufficient.

Combined, these issues allow an attacker to generate a proof for Asset A but claim the withdrawal as Asset

B, with proof verification succeeding because the verifier is asset-agnostic.

Problem scenarios

Given two vaults containing Asset A (e.g., jitoSOL) and Asset B (e.g., zenBTC), an attacker can achieve

cross-asset theft through the following steps:

1. Shield tokens of Asset A:

• The attacker shields 100 jitoSOL, creating a commitment

C = hash(note_secret, [100, 0, 0, assetA]).

2. Generate a valid ZK proof for Asset A:

• Ownership of the commitment in the Merkle tree

• Correct balance conservation (balance → new_balance + amount + fee)

• The circuit uses the private input asset=A internally to match the commitment

3. Submit Unshield with msg.Asset = B:

• msg.Asset = zenBTC ← Exploits vulnerability

• msg.Amount = 100 ← Matches the proof

Informal Systems © 2026 37

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go#L450-L501
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L202-L209

Zenrock Q1 2026 Security Audit Report

• msg.RecipientAddress = attackerWallet

• msg.ZkProof = validProofForAssetA

4. Proof verification succeeds:

• ComputeOutputsCommitmentV7() hashes the message commitments without including the asset

• The circuit’s internal hash matches the on-chain computed hash

• msg.Asset is only used after verification for chain routing, not validation

• UnshieldRequest is created with both Asset=zenBTC and Caip2ChainId mapping to zenBTC and not

jitoSOL

5. Global supply check passes:

• TotalShielded >= msg.Amount + msg.Fee checks against the total shielded (cross-assets) counter

• The system doesn’t verify that Asset B specifically has sufficient shielded funds

6. ABCI routes to wrong vault:

1. The UnshieldRequest is created with Asset=zenBTC thus is picked up by the ABCI handler

• The ABCI handler looks up zenBTC’s Solana program and transfers 100 zenBTC from the zenBTC vault

to the attacker

Result: The attacker receives 100 zenBTC (from another user’s deposit) while their jitoSOL commitment is

nullified. The jitoSOL vault retains its 100 tokens (orphaned), and the zenBTC vault is drained.

Recommendation

• Add asset to outputs commitment: Include msg.Asset in ComputeOutputsCommitmentV7() so the

proof is cryptographically bound to a specific asset. Requires circuit and client library updates.

• Per-asset supply tracking: Replace: global TotalShielded with per-asset counters

(map[ShieldAsset]*AssetSupply). Prevents cross-asset balance exploitation even if other checks fail.

Resolution

The development team has addressed this finding in PR #846.

Informal Systems © 2026 38

https://github.com/zenrocklabs/zenrock/pull/846

Zenrock Q1 2026 Security Audit Report

Circumventing fees
Severity Critical Exploitability High Status Resolved

Type Design Impact High

Involved artifacts

• zenrock/zrchain/x/hush/keeper/msg_server.go

Description

There is no guarantee that fees are paid when a user submits a shielded transfer due to missing logic and

constraints in ShieldedTransfer.

Problem scenarios

A user can simply skip from providing a FeeCommitment. As a result, hasFeeCommitment is not set and as

a result the fee-voucher-related code is not even called. Even worse, even if a FeeCommitment is provided,

there is no check that this commitment can be spent by the fee collector in any way, so the created fee

voucher remains unspendable. Or the user could just set a FeeCommitment in such a way as to get the

fees back.

Recommendation

The solution presented PR #846 seems to be going towards the right approach. Just update fee stats during

shield transfers and then based on those stats, allow governance to claim those protocol fees.

Resolution

The development team addressed this finding in commit 83d5620.

Informal Systems © 2026 39

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L488
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L573
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L573
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L714-L730
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L720
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L720
https://github.com/zenrocklabs/zenrock/pull/846
https://github.com/zenrocklabs/zenrock/commit/83d5620e879bffaa6338b78d8e1f43a345926f65

Zenrock Q1 2026 Security Audit Report

Reusing balance nullifier
Severity Critical Exploitability High Status Resolved

Type Implementation Impact High

Involved artifacts

• zenrock/zrchain/x/hush/keeper/msg_server.go

Description

There is no check on whether a nullifier is used both as a balance and an incoming nullifier.

Problem scenarios

User submits a MsgUnshield or a MsgShieldedTransfer message with a balance nullifier B and includes this

exact same nullifier B in the incoming nullifiers. Although both Unshield and ShieldedTransfer check for

duplicate incoming nullifiers, there is no check that a balance nullifier is not reused as an incoming nullifier.

As a result, a user can shield 1 token, submit an MsgUnshield for that token and reuse the balance nullifier

in the incoming nullifier, ending up getting 2 tokens back (i.e., one from the balance and one due to the

incoming nullifier). Note that this is possible because the balance nullifier is unspent at the beginning of the

IsNullifierSpent check.

Recommendation

PR #839 already added a check that the balance nullifier does not appear in the incoming nullifiers. But what

might be even better is to immediately mark a nullifier (MarkNullifierSpent) after seeing that it is not spent

(i.e., IsNullifierSpent). Because there is no reason to only mark the nullifier much later on because in any

case the Unshield and MsgUnshield operate on a cached context so if the operation fails, the markings will

be reversed.

Resolution

The development team has addressed this finding in PR #839.

Informal Systems © 2026 40

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L98
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L535
https://github.com/zenrocklabs/zenrock/pull/839
https://github.com/zenrocklabs/zenrock/pull/839

Zenrock Q1 2026 Security Audit Report

Hardcoded note sequence limit
Severity Critical Exploitability High Status Resolved

Type Implementation Impact High

Involved artifacts

• zrchain/clients/hush-wasm/src/lib.rs

Description

Uses only [0..1000) range to find balance_note.

Problem scenarios

If balance_note is created with a higher sequence, it’s not recovered.

Recommendation

Use a configurable or guessed sequence set as input to iterate over.

Resolution

The development team has addressed this finding in PR #846.

Informal Systems © 2026 41

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3084
https://github.com/zenrocklabs/zenrock/pull/846

Zenrock Q1 2026 Security Audit Report

Integer overflow in balance accumulation
Severity High Exploitability Medium Status Resolved

Type Implementation Impact High

Involved artifacts

• zrchain/contracts/miden-circuits/hush.masm

Description

The circuit accumulates input and output amounts through multiple field addition operations without

overflow detection. Since Miden VM uses Goldilocks field arithmetic (modulus p = 2^64 - 2^32 + 1), when

accumulated values exceed this modulus, they automatically wrap around via modular reduction. This

wraparound breaks the conservation of value invariant, allowing attackers to craft transactions where the

balance equation total_input == total_output passes despite having vastly different actual amounts.

The vulnerable accumulation operations occur at:

• Accumulate balance note amount into total_input (code ref).

• Accumulate incoming note amounts into total_input (up to 24 notes) (code ref).

• Accumulate new balance amount into total_output (mem_load.68 mem_load.34 add mem_store.34).

• Add recipient_amount to total_output (code ref).

• Add fee to total_output (code ref).

And then the balance is verified (code ref).

Neither the circuit nor hush-wasm validate that individual amounts or their sum remain below the field

modulus. Amounts are pushed to the advice tape without sanitization at lines, and the circuit performs no

bounds checking before accumulation.

Problem scenarios

When a user accumulates multiple large shielded transfers over time the sum of their balance note and

incoming notes can legitimately exceed the Goldilocks field modulus during normal protocol usage. Since

the circuit performs field additions without overflow detection, this sum wraps around modulo p to a much

smaller value. The balance verification then compares this wrapped input total against the output total, which

the attacker can craft to match the wrapped value rather than the true value. This allows transactions where

the actual inputs far exceed the outputs (causing token loss) or where outputs exceed inputs (creating

unbacked tokens), yet the circuit’s balance check passes because both sides wrap to the same incorrect

value.

Recommendation

• Input sanitization in hush-wasm: Before pushing amounts to the advice tape, apply to_field_safe()

function to reduce any values >= GOLDILOCKS_MODULUS. Additionally, validate that each individual amount

Informal Systems © 2026 42

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L369
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L438
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L512
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L598
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L609
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L612

Zenrock Q1 2026 Security Audit Report

(balance, incoming notes, new balance, recipient, fee) does not exceed a reasonable maximum to ensure

even with 24 incoming notes plus balance, the sum cannot overflow. Also perform pre-flight validation by

computing total inputs and total outputs and rejecting if either sum would exceed GOLDILOCKS_MODULUS.

• Circuit-level bounds enforcement: At each adv_push.1 operation that loads an amount add an

assertion to verify the loaded value is within the safe maximum (e.g., <= 2^62). This creates a hard

constraint that malicious clients cannot bypass and guarantee that accumulation cannot overflow (i.e.,

exceed GOLDILOCKS_MODULUS) regardless of how amounts are combined.

Resolution

The development team has implemented felt_from_u64 and introduced checked addition across

hush-wasm in PR #903. Additionally in PR #913 development team introduced validation for individual amount

bounds < 2^59 and sum bounds (total_input and total_output) to be < GOLDILOCKS_MODULUS (check

added both in hush-wasm and in hush.masm).

Informal Systems © 2026 43

https://github.com/zenrocklabs/zenrock/pull/903
https://github.com/zenrocklabs/zenrock/pull/913

Zenrock Q1 2026 Security Audit Report

Unsanitized u64 as field element
Severity High Exploitability Medium Status Resolved

Type Implementation Impact High

Involved artifacts

• zrchain/clients/hush-wasm/src/lib.rs (code ref 1, code ref 2, code ref 3, etc)

• zrchain/contracts/miden-merkle/src/contract.rs (code ref)

Description

u64 is directly as field elements without validating they are less than GOLDILOCKS_MODULOUS.

Problem scenarios

A high value u64 maybe equivalent to low value u64 in the field operation, resulting attack vectors.

Recommendation

Validate the balances to be less then GOLDILOCKS_MODULUS.

Resolution

The development team addressed this finding in PR #851.

Informal Systems © 2026 44

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3661-L3664
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3741-L3742
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L300
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L36
https://github.com/zenrocklabs/zenrock/pull/851

Zenrock Q1 2026 Security Audit Report

Missing shared secret validation
Severity High Exploitability Medium Status Resolved

Type Implementation Impact High

Involved artifacts

• zrchain/clients/hush-wasm/src/lib.rs

Description

The shared secret generated with ECDH should be rejected if it’s all-zeros to avoid encrypted values being

decrypted by other keys.

Problem scenarios

If the shared secret is not validated and is all-zeros, values encrypted with that shared secret can be

decrypted by other parties.

1 #[test] Rust

2 fn x25519_all_zero_shared_secret_with_zero_public_key() {

3 use x25519_dalek::{PublicKey, StaticSecret};

4

5 let amount = 123456789u64;

6

7 // Generate random sender randomness for nonce derivation

8 let mut sender_randomness = [0u8; 12];

9 getrandom::getrandom(&mut sender_randomness).map_err(|e| e.to_string()).unwrap();

10

11 let mut nonce_input = Vec::new();

12 nonce_input.extend_from_slice(&sender_randomness);

13 nonce_input.extend_from_slice(ENCRYPTION_NONCE_DOMAIN);

14 let nonce_hash = rpo_hash_internal(&nonce_input).unwrap();

15 let mut amount_nonce = [0u8; 12];

16 amount_nonce.copy_from_slice(&nonce_hash[..12]);

17

18 // Two different private keys for testing

19 let my_secret = StaticSecret::from([42u8; 32]);

20 let my_secret2 = StaticSecret::from([51u8; 32]);

21

22 // Attacker-provided peer public key = all zeros (a small-order point encoding).

23 let their_pub = PublicKey::from([0u8; 32]);

24

25 let shared = my_secret.diffie_hellman(&their_pub);

Informal Systems © 2026 45

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs

Zenrock Q1 2026 Security Audit Report

26 let shared2 = my_secret2.diffie_hellman(&their_pub);

27

28 assert_eq!(shared.as_bytes(), &[0u8; 32], "hared secret should be all-zero");

29 assert_eq!(shared.as_bytes(), &[0u8; 32], "shared secret should be all-zero");

30

31 let derived_key_1 = derive_amount_key_internal(shared.as_bytes()).unwrap();

32 let derived_key_2 = derive_amount_key_internal(shared2.as_bytes()).unwrap();

33

34
 assert_eq!(derived_key_1, derived_key_2, "amount keys should match for same all-

zero shared secret");

35

36 // Encrypt with derived key 1

37
 let encrypted_amount = encrypt_amount_internal(&derived_key_1, amount,

&amount_nonce).unwrap();

38 // Decrypt with derived key 2

39
 let decrypted_amount = decrypt_amount_internal(&derived_key_2,

encrypted_amount.as_slice()).unwrap();

40

41 assert_eq!(amount, decrypted_amount, "decrypted amount should match original");

42 }

Recommendation

Add validation of shared secrets shared_secret != [0u8; 32] (e.g., here).

Resoultion

The development team has addressed this finding in PR #869.

Informal Systems © 2026 46

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L1711C9-L1712
https://github.com/zenrocklabs/zenrock/pull/869

Zenrock Q1 2026 Security Audit Report

Stealth recovery mismatch
Severity High Exploitability Medium Status Resolved

Type Implementation Impact High

Involved artifacts

• zrchain/clients/hush-wasm/src/lib.rs

Description

Stealth transfer creation builds note_secret (code ref) and randomness (code ref) from the shared secret

with a fixed label. Recovery builds them from shared secret and leaf_index (code ref 1, code ref 2). So

the recovery path makes different secrets than what the transfer used. The commitment check fails and the

note gets missed.

Problem scenarios

Alice sends a stealth transfer to Bob. Then Bob runs recovery later. But the note doesn’t show up.

Recommendation

Use consistent derivation rule for note secret and randomness.

Resolution

The development team has addressed this finding in PR #903.

Informal Systems © 2026 47

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L1714-L1721
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L1723-L1727
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3143
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3151
https://github.com/zenrocklabs/zenrock/pull/903

Zenrock Q1 2026 Security Audit Report

Missing message validation in x/hush handlers
Severity High Exploitability High Status Resolved

Type Implementation Impact Medium

Involved artifacts

• zrchain/x/hush/keeper/msg_server.go

Description

The MsgUnshield and MsgShieldedTransfer handlers do not validate the size of

EncryptedNewBalanceIndex and EncryptedRecipientIndex fields. While other encrypted fields like

EncryptedNewBalanceAmount are validated to be exactly 36 bytes, these index fields accept arbitrary-length

byte arrays that get stored permanently in chain state.

Problem scenarios

An attacker submits a valid MsgUnshield transaction with a multi-megabyte EncryptedNewBalanceIndex field

filled with garbage data. The transaction passes all validation checks (ZK proof, nullifiers, commitments)

and succeeds. The garbage data is stored in both the UnshieldRequest and Voucher records, bloating

validator state. While bounded by Cosmos SDK’s ~5MB transaction limit and gas costs, repeated attacks

could accumulate gigabytes of unnecessary storage.

Recommendation

Add length validation for the missing fields following the Cosmos SDK ValidateBasic pattern, where

stateless message validation should reject malformed inputs before any state access occurs:

1 // In Unshield and ShieldedTransfer: Go

2 if len(msg.EncryptedNewBalanceIndex) > 0 && len(msg.EncryptedNewBalanceIndex) != 36 {

3
 return nil, errorsmod.Wrap(sdkerrors.ErrInvalidRequest, "encrypted_new_balance_index

must be 36 bytes")

4 }

5

6 // Additionally in ShieldedTransfer:

7 if len(msg.EncryptedRecipientIndex) > 0 && len(msg.EncryptedRecipientIndex) != 36 {

8
 return nil, errorsmod.Wrap(sdkerrors.ErrInvalidRequest, "encrypted_recipient_index

must be 36 bytes")

9 }

Resolution

The development team addressed this finding in commit 83d5620.

Informal Systems © 2026 48

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L45-L343
https://github.com/zenrocklabs/zenrock/commit/83d5620e879bffaa6338b78d8e1f43a345926f65

Zenrock Q1 2026 Security Audit Report

Cross-chain linkability
Severity Medium Exploitability Medium Status Resolved

Type Design Impact Medium

Involved artifacts

• zrchain/clients/hush-wasm/src/lib.rs

• zrchain/contracts/miden-circuits/hush.masm

Description

Right now the key derivations (spending_key → note_secret / randomness / nullifier_key) and the

commitment hash don’t mix in a CHAIN_ID. That means the same signature and inputs can produce the same

keys and commitments on multiple networks. So a wallet can accidentally reuse secrets across chains, and

the commitments can be linked across networks.

Problem scenarios

• You use the same wallet signature on mainnet + testnet, and the spending_key / nullifier_key end up

identical on both.

• A note with the same amount/asset/randomness can produce the same commitment on different networks,

so someone can match it across chains.

• An auditor watching multiple networks can link activity just by matching commitments or nullifiers.

Recommendation

Include CHAIN_ID in key management and the commitment input:

• Mix CHAIN_ID into derive_spending_key_internal (or into the domain separators) so keys are chain-

specific.

• Carry that through the rest of the hierarchy (note_secret, randomness, nullifier_key).

• Add CHAIN_ID into the commitment formula in both Rust and the MASM circuit so commitments are chain-

specific too.

Resolution

The development team has addressed this finding in commit 75f6e80.

Informal Systems © 2026 49

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm
https://github.com/zenrocklabs/zenrock/commit/75f6e8036eb0a0bbbd483c1ece2bab39b46bc177

Zenrock Q1 2026 Security Audit Report

Mempool proof replay attack
Severity Medium Exploitability Low Status Resolved

Type Implementation Impact High

Involved artifacts

• zrchain/x/hush/keeper/merkle.go

• zrchain/x/hush/keeper/msg_server.go

Description

The x/hush module’s ShieldedTransfer function is vulnerable to a mempool proof replay attack that allows

an attacker to copy a valid transaction from the mempool, modify the msg.Asset and msg.Creator fields,

and front-run the original sender.

Root causes:

1. Asset not bound to proof: The msg.Asset field is not included in V7′s outputs commitment. The only

value that changes with asset is the fee parameter, meaning proofs are interchangeable between assets

if their ShieldedTransferFee values are identical.

2. Proof validation is asset-agnostic: The ZK proof verifies that commitments are correctly formed and

conservation holds, but doesn’t validate which asset those commitments belong to—that check happens

implicitly via fee matching.

Current protection (weak): The attack only succeeds when two assets have the same ShieldedTransferFee.

Current fee differences (jitoSOL: 10000000, zenBTC: 10000) prevent exploitation, but this is security-by-

coincidence, not security-by-design.

Problem scenarios

Given two assets with identical ShieldedTransferFee values, an attacker can hijack a shielded transfer:

1. User A submits a MsgShieldedTransfer to transfer jitoSOL within the shielded pool:

• msg.Creator = “zen1user…”

• msg.Asset = jitoSOL

• msg.ZkProof = P (valid proof)

• msg.RecipientCommitment, msg.NewBalanceCommitment, etc.

2. Attacker observes mempool and front-runs user A’s transaction with:

• msg.Creator = “zen1attacker…” ← changed to attacker’s address

• msg.Asset = zenBTC ← changed

• msg.ZkProof = P and all other fields copied from the original

3. Proof verification succeeds:

• ComputeOutputsCommitmentV7() computes the same hash (asset not included)

• The fee value matches (by assumption)

• The circuit internally verified conservation using the original private inputs

Informal Systems © 2026 50

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go#L450-L501
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L202-L209

Zenrock Q1 2026 Security Audit Report

• Neither msg.Creator nor msg.Asset affect the hash

4. Attacker’s transaction succeeds and corrupts the states :

• Nullifiers are marked as spent

• Vouchers are created with wrong asset tags (zenBTC instead of jitoSOL)

• ShieldedTransfer record stored with the attacker as msg.Creator

5. User A’s transaction is rejected:

• “nullifier already spent” error

• User A cannot retry (nullifiers are consumed)

Result:

• User A’s transfer fails (DoS)

• Vouchers are tagged as zenBTC instead of jitoSOL (corruption)

• Recipient voucher routes to wrong Solana program at unshield time

• No funds are stolen (commitments remain cryptographically bound to original owners)

Recommendation

• Add asset to outputs commitment: Include msg.Asset in the metadata word. Prevents cross-asset

proof reuse regardless of fee values.

• Enforce unique fees per asset: Governance constraint preventing identical ShieldedTransferFee

values.

Resolution

The development team has addressed this finding in PR #846.

Informal Systems © 2026 51

https://github.com/zenrocklabs/zenrock/pull/846

Zenrock Q1 2026 Security Audit Report

Missing tree depth validation makes the contract

unusable
Severity Medium Exploitability Low Status Resolved

Type Implementation Impact High

Involved artifacts

• zrchain/contracts/miden-merkle/src/contract.rs

Description

The instantiate() function in the miden-merkle contract accepts a tree_depth parameter from

InstantiateMsg without validating its upper bound.

The vulnerability manifests in two locations. First, in the max_tree_capacity() helper function (code ref), the

expression 1u64 << depth overflows when depth >= 64. Second, in the node_position() function (code

ref), the expression ((level as u64) << depth) + index can overflow when depth values approach 64.

Since the tree depth is set during initialization and cannot be changed afterward, an invalid depth value

permanently breaks the contract instance, requiring redeployment with correct parameters.

These overflows prevent the contract from storing any commitments, making it basically unusable.

Test

This is a test showcasing this issue. We instantiate the contract with a three_depth of 64. After that, we try

to add a commitment and the contract panics with: “attempt to shift left with overflow”.

1 #[test] Rust

2 #[should_panic(expected = "attempt to shift left with overflow")]

3 fn test_instantiate_invalid_tree_depth() {

4 let mut deps = mock_dependencies();

5 let msg = InstantiateMsg { tree_depth: 64, history_size: None };

6 let info = mock_info("creator", &[]);

7 let res = instantiate(deps.as_mut(), mock_env(), info, msg).unwrap();

8 assert_eq!(res.attributes.len(), 3);

9 assert!(res.attributes.iter().any(|a| a.key == "tree_depth" && a.value == "64"));

10

11 // Now we try to add a commitment

12 let commitment = vec![1u8; 32];

13 let sudo_msg = SudoMsg::AddCommitment { commitment };

14 sudo(deps.as_mut(), mock_env(), sudo_msg).unwrap();

15 }

Informal Systems © 2026 52

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L91-L124
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L17-L20
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L317-L320
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L317-L320

Zenrock Q1 2026 Security Audit Report

Problem scenarios

The deployer of the contract mistakenly sets the tree_depth parameter to be ≥ 64. The contract is instan

tiated correctly, but on the first sudo_add_commitment() call, the overflow occurs, making it impossible to

add any commitments to the tree.

Recommendation

Add explicit validation in the instantiate() function to reject tree depths that could cause arithmetic

overflow. The maximum safe depth for a u64-based tree is 63, as 1u64 << 63 produces a valid result while

1u64 << 64 overflows.

Alternatively, if the tree depth is predetermined for the deployment environment, consider defining it as a

compile-time constant rather than accepting it as a runtime parameter, eliminating the validation requirement

entirely.

Resolution

The development team has addressed this finding in PR #869.

Informal Systems © 2026 53

https://github.com/zenrocklabs/zenrock/pull/869

Zenrock Q1 2026 Security Audit Report

Lack of confirmation during admin updates
Severity Medium Exploitability Low Status Resolved

Type Implementation Impact High

Involved artifacts

• zrchain/contracts/miden-merkle/src/contract.rs

Description

The admin update process implemented in the execute_update_admin() function does not follow the best

practices. The process is implemented in a single step, where the admin only overwrites its address by

adding the new admin.

As a result, it is possible to assign control of the contract to an incorrect address. Once such an update

occurs, the contract’s administrative functions become permanently inaccessible, effectively locking the

contract’s configuration and administrator capabilities.

Problem scenarios

An admin unintentionally sets another address as the admin without that entity’s knowledge or ability to

interact. The system remains operational, but future administrative actions are impossible.

Recommendation

To mitigate the risk of administrative lockout and to ensure that admin updates are both valid and explicitly

acknowledged, the contract should use the two-step ownership transfer pattern provided by the cw-ownable

library.

The library enforces a proposal → acceptance workflow before ownership changes are finalized. It ensures

that no contract can become ownerless or accidentally locked due to invalid admin updates.

Resolution

The development team has addressed this finding in PR #846.

Informal Systems © 2026 54

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L185-L210
https://crates.io/crates/cw-ownable
https://github.com/zenrocklabs/zenrock/pull/846

Zenrock Q1 2026 Security Audit Report

Nullifier key derivation mismatch in account recov

ery
Severity Medium Exploitability High Status Resolved

Type Implementation Impact Low

Involved artifacts

• zrchain/clients/hush-wasm/src/lib.rs

Description

The recover_account_state function uses derive_nullifier_key_internal (code ref) to derive the nulli

fier key, while all other functions like derive_voucher_v2 (code ref), create_balance_note_internal (code

ref), and derive_full_viewing_key (code ref) use derive_nullifier_key_circuit_internal.

These two functions use different hashing approaches:

• derive_nullifier_key_internal (code ref): concatenates spending_key with domain bytes and uses

Rpo256::hash_elements

• derive_nullifier_key_circuit_internal: structures inputs to match the circuit’s hmerge instruction then

calls vm_hmerge which uses Rpo256::merge with the exact state layout that the VM uses internally

They produce completely different outputs for the same spending_key.

Test

1 #[test] Rust

2 fn test_nullifier_key_derivation_mismatch() {

3 let spending_key = [0x41u8; 32];

4

5 let result_circuit = derive_nullifier_key_circuit_internal(&spending_key).unwrap();

6 let result_internal = derive_nullifier_key_internal(&spending_key).unwrap();

7

8 println!("Circuit: {}", hex::encode(&result_circuit));

9 println!("Internal: {}", hex::encode(&result_internal));

10

11 // This assertion will FAIL, demonstrating the bug

12 assert_eq!(

13 result_circuit, result_internal,

14 "Circuit and internal derivation outputs are not the same!"

15);

16 }

Informal Systems © 2026 55

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3060-L3061
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L797
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L490
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L490
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L689
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L327-L341

Zenrock Q1 2026 Security Audit Report

Test fails with output:

1 Circuit: 943645f1bbd5dcd2bb30e78cd972326dc3e5ab3277634cf0cb0457f5343ddf12

2 Internal: 7da21cb21e6bd68e7bc80d9ff244413e02cb23ce3cd696c07f45c05f91ce2de1

Problem scenarios

When a user calls recover_account_state to scan their vouchers and determine which are spent:

1. The function derives the wrong nullifier_key using derive_nullifier_key_internal

2. For each voucher, it computes nullifiers using the wrong key

3. It compares against on-chain spent nullifiers (which were computed using the circuit-compatible deriva

tion)

4. No matches are found because the nullifiers are completely different

5. All vouchers appear unspent, even if they were already spent

If the user attempts to spend a voucher that appears unspent but is actually spent, the ZK proof generation

will use the correct circuit-compatible derivation, produce the correct nullifier, and the chain will reject the

transaction because that nullifier is already marked as spent.

Recommendation

Replace derive_nullifier_key_internal with derive_nullifier_key_circuit_internal in

recover_account_state. Additionally, consider deprecating or removing derive_nullifier_key_internal

to prevent future misuse.

Resolution

The development team has addressed this finding in commit 069c281.

Informal Systems © 2026 56

https://github.com/zenrocklabs/zenrock/commit/069c281ba7d42632aa433ff8c527a62847e2c480

Zenrock Q1 2026 Security Audit Report

Erroneous supply stats
Severity Medium Exploitability High Status Resolved

Type Implementation Impact Low

Involved artifacts

• zenrock/zrchain/x/validation/keeper/abci_hush.go

• zenrock/zrchain/x/hush/keeper/keeper.go

Description

If a user (by accident or maliciously) performs two shielding events with the exact same commitment it can

lead to erroneous accounting statistics and a lingering voucher that the user cannot use.

Problem scenarios

Specifically, a can user initiate two shielding events with the exact same commitment that are both processed

in processShieldEvents. During the first processing of the shield event, a voucher would be created for this

commitment. Then, when the second shield event is being processed (this can happen because it has a

different shieldEvent.TxId and shieldEvent.LogIndex than the first shield event), it also creates a voucher

for the exact same commitment and furthermore overwrite CommitmentToVoucherStore with the nextID of

this commitment. Now, when the user spends one voucher, the nullifier is marked as spent and the user

cannot use the other voucher.

This leads to:

• Accounting of supply is wrong (due to updateSupply being true).

• Due to the overwrite of CommitmentToVoucherStore the user is not able to generate a proof to retrieve

funds from the first voucher. This is good because it does not allow for double spending but the UX might

be bad in the sense that the user sees a voucher that they cannot use.

Recommendation

Introduce a check before the AddCommitment call and in case the commitment already exists (e.g., by

checking CommitmentToVoucherStore) return an error.

Resolution

The development team has addressed this finding in PR #869.

Informal Systems © 2026 57

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L24
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L391
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L24
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L44-L68
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L44-L68
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L26
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L26
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L26
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L26
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L432
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L444
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L391
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L391
https://github.com/zenrocklabs/zenrock/pull/869

Zenrock Q1 2026 Security Audit Report

Unbounded Merkle Depth (DoS vector)
Severity Medium Exploitability Medium Status Resolved

Type Implementation Impact Medium

Involved artifacts

• zrchain/clients/hush-wasm/src/lib.rs

Description

depth (which is siblings.len() / 32) is never checked for bounds (code ref).

Problem scenarios

An attacker can pass a siblings array of arbitrary size (e.g., 10MB = 327,680 siblings = depth 327,680),

causing the loop to execute millions of times with expensive hash operations per iteration.

Recommendation

1 const MAX_MERKLE_DEPTH: usize = 64; // Reasonable upper bound Rust

2 let depth = siblings.len() / 32;

3 if depth > MAX_MERKLE_DEPTH {

4 return Err(JsValue::from_str("Merkle depth exceeds maximum allowed"));

5 }

Resolution

The development team has addressed this finding in commit 3edd36f.

Informal Systems © 2026 58

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L2841
https://github.com/zenrocklabs/zenrock/commit/3edd36f8216a7d9f431136b3c89ce59283f83461

Zenrock Q1 2026 Security Audit Report

Unbounded JSON string (DoS vector)
Severity Medium Exploitability Medium Status Resolved

Type Implementation Impact Medium

Involved artifacts

• zrchain/clients/hush-wasm/src/lib.rs

Description

The serde_json::from_str calls are on &str with unbounded length.

Problem scenarios

An attacker (requires highjacked wallet or RPC endpoint) can submit a really large JSON which is processed

by wasm functions leading to high memory and CPU usage.

Recommendation

Validate lengths of all unbounded input bytes and strings with a reasonable upper bound.

Resolution

The development team has addressed this finding in commit 3edd36f.

Informal Systems © 2026 59

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs
https://github.com/zenrocklabs/zenrock/commit/3edd36f8216a7d9f431136b3c89ce59283f83461

Zenrock Q1 2026 Security Audit Report

Missing host-side new balance validation (DoS vec

tor)
Severity Medium Exploitability Medium Status Resolved

Type Implementation Impact Medium

Involved artifacts

• zrchain/clients/hush-wasm/src/lib.rs

Description

The generate_account_proof_internal() function accepts new_balance_amount as a parameter but per

forms no validation that:

1. new_balance_amount = old_balance + incoming_total - recipient_amount - fee

2. Amounts don’t overflow

3. Fee is correctly applied

Problem scenarios

While the proof will correctly fail if amounts don’t balance, the Rust host code should validate inputs

before expensive proof computation (~1-8 seconds). An attacker (requires browser wallet or RPC endpoint

highjacking) could:

• Submit new_balance_amount = u64::MAX (invalid)

• Trigger expensive STARK proof generation (wasting CPU)

• Proof fails at circuit assertion (but attacker already wasted resources)

This is a DoS vector, not an infinite money bug (circuit prevents actual exploit).

Recommendation

1 // Validate amount conservation Rust

2 let incoming_sum: u64 = incoming_notes.iter().map(|n| n.amount).sum();

3 let old_balance = balance_note.as_ref().map(|n| n.amount).unwrap_or(0);

4 let expected_new_balance = old_balance.checked_add(incoming_sum)

5 .and_then(|sum| sum.checked_sub(recipient_amount))

6 .and_then(|sum| sum.checked_sub(fee))

7 .ok_or("Amount overflow or underflow")?;

8 if new_balance_amount != expected_new_balance {

9 return Err("new_balance_amount does not match expected value".to_string());

10 }

Informal Systems © 2026 60

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3574

Zenrock Q1 2026 Security Audit Report

Resolution

The development team has addressed this finding in commit 3edd36f.

Informal Systems © 2026 61

https://github.com/zenrocklabs/zenrock/commit/3edd36f8216a7d9f431136b3c89ce59283f83461

Zenrock Q1 2026 Security Audit Report

Silent recipient string truncation
Severity Medium Exploitability Low Status Resolved

Type Implementation Impact High

Involved artifacts

• zrchain/clients/hush-wasm/src/lib.rs

Description

Only first 32 bytes are copied from recipient_bytes.

Problem scenarios

Potential fund loss or transaction errors.

Recommendation

1 if recipient_bytes.len() > 32 { Rust

2 return Err(JsValue::from_str("Recipient address exceeds 32 bytes"));

3 }

Resolution

The development team has addressed this finding in commit 3edd36f.

Informal Systems © 2026 62

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L2903
https://github.com/zenrocklabs/zenrock/commit/3edd36f8216a7d9f431136b3c89ce59283f83461

Zenrock Q1 2026 Security Audit Report

AddCommitment overwrites
Severity Medium Exploitability High Status Resolved

Type Design Impact Low

Involved artifacts

• zrchain/x/hush/keeper/keeper.go

• zrchain/x/hush/keeper/merkle.go

Description

We can have multiple AddCommitment calls in the same block for a specific height H and as a result the root

for H will overwrite the previously written root for height H. This means that a user might have to generate

a proof again because their proof is based on an invalid root (i.e., cannot be found in ROOT_HISTORY) even

though the user just generated the proof, leading to bad user experience.

Problem scenarios

If we have multiple AddCommitment calls in a block at height H (e.g., multiple MsgShieldedTransfer trans

actions in the same block), then each of those AddCommitments updates the root for this specific height H,

overwriting the previous entry for height H. This can lead to cases where a user generates a proof based on

some Merkle root R but when submitting the message with this proof, root R cannot be found because it has

been overwritten.

Recommendation

Change the key of ROOT_HISTORY to not be block height but something globally unique such as the leaf index

as done in PR #839.

Resolution

The development team has addressed this finding in PR #839.

Informal Systems © 2026 63

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/state.rs#L31
https://github.com/zenrocklabs/zenrock/pull/839
https://github.com/zenrocklabs/zenrock/pull/839
https://github.com/zenrocklabs/zenrock/pull/869

Zenrock Q1 2026 Security Audit Report

Missing check for leaf_index
Severity Low Exploitability Medium Status Resolved

Type Implementation Impact Low

Involved artifacts

• zrchain/clients/hush-wasm/src/lib.rs

Description

The leaf_index is not validated that it is smaller than 2 ^ depth (code ref).

Problem scenarios

Invalid leaf_index can be used to successfully call the function compute_merkle_root.

Recommendation

1 if leaf_index >= (1 << depth) { return Err(...); } Rust

Resolution

The development team has addressed this finding in commit 16480dc.

Informal Systems © 2026 64

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L2843
https://github.com/zenrocklabs/zenrock/commit/16480dca37609eebd948cad8c1e8c009dd44b096

Zenrock Q1 2026 Security Audit Report

Commitment field ordering inconsistency
Severity Low Exploitability Low Status Resolved

Type Implementation Impact Low

Involved artifacts

• zrchain/contracts/miden-merkle/src/contract.rs

Description

The miden-merkle contract uses incorrect field ordering when computing commitments, resulting in

a mismatch with the circuit and client implementations. In query_compute_commitment uses order

[0, 0, asset, amount] (code ref) instead of stack order [amount, 0, 0, asset] (as done in hush-wasm’s

compute_commitment_internal (code ref)).

Problem scenarios

When external tools query the miden-merkle contract to verify a commitment computed by hush-wasm, the

hashes will not match.

Recommendation

Fix the implementation of query_compute_commitment to use stack order instead of log

ical order. Change from [Word::new([ZERO, ZERO, Felt::new(asset), Felt::new(amount)])] to

[Word::new([Felt::new(amount), ZERO, ZERO, Felt::new(asset)])] so that after reversal before hash

ing in hash_nodes, the logical order is [asset, 0, 0, amount].

Additionally, make sure values are converted to safe field elements before calling Felt::new().

Resolution

The development team has addressed this finding in PR #855.

Informal Systems © 2026 65

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L456
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L300
https://github.com/zenrocklabs/zenrock/pull/855

Zenrock Q1 2026 Security Audit Report

Duplicate vouchers compute wrong balance
Severity Low Exploitability Medium Status Resolved

Type Implementation Impact Low

Involved artifacts

• zrchain/clients/hush-wasm/src/lib.rs

Description

The function recover_account_state takes vouchers_json from outside and just adds matching notes to

a list without checking for duplicates. When calculating total_balance, it sums up all entries including the

duplicates. If someone passes the same voucher 5 times, the balance shows 5x the real amount.

Problem scenarios

A malicious RPC or frontend could return the same voucher multiple times. User sees a fake inflated balance

and might try to spend money they don’t have. They waste CPU time generating a proof and gas submitting

a tx that the chain will reject anyway.

Could also be used for scams by showing fake “proof” of wealth.

Recommendation

Use HashSet instead of Vec for incoming_notes (code ref).

A similar fix should go into generate_account_proof (code ref).

Resolution

The development team has addressed this finding in commit 16480dc.

Informal Systems © 2026 66

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3163-L3173
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3068
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3549
https://github.com/zenrocklabs/zenrock/commit/16480dca37609eebd948cad8c1e8c009dd44b096

Zenrock Q1 2026 Security Audit Report

Missing integer overflow check in x/hush module
Severity Informational Exploitability None Status Resolved

Type Implementation Impact None

Involved artifacts

• zrchain/x/validation/keeper/abci_hush.go

Description

In the processUnveilBroadcasting function, the TotalShielded supply gets incremented by the shield

events amount without checking for integer overflow.

Problem scenarios

If a new ShieldAsset is added with no economic cap, like Ethereum, repeated large deposits could

accumulate to overflow.

Recommendation

Add integer overflow check in createVoucherInternal :

1 if updateSupply && amount > 0 { JavaScript

2 supply, err := k.GetSupply(ctx)

3 if err != nil {

4 return 0, err

5 }

6

7 // Check for overflow before addition

8 if amount > math.MaxUint64 - supply.TotalShielded {

9
 return 0, fmt.Errorf("supply overflow: adding %d to %d would exceed uint64",

amount, supply.TotalShielded)

10 }

11

12 supply.TotalShielded += amount

13 if err := k.SetSupply(ctx, supply); err != nil {

14 return 0, err

15 }

16

17 // rest of function

Informal Systems © 2026 67

https://github.com/zenrocklabs/zenrock/blob/27539c1b6bf538b821c98abdd767f7d3438f4d00/zrchain/x/validation/keeper/abci_hush.go#L462

Zenrock Q1 2026 Security Audit Report

Resolution

The development team addressed this finding in commit 30f9ae0.

Informal Systems © 2026 68

https://github.com/zenrocklabs/zenrock/commit/30f9ae03d4cdd73f83224393386905951a34af0f

Zenrock Q1 2026 Security Audit Report

Note secret derivation inconsistency between bal

ance notes and vouchers
Severity Informational Exploitability None Status Resolved

Type Implementation Impact None

Involved artifacts

• zrchain/clients/hush-wasm/src/lib.rs

Description

Balance notes and vouchers use different hashing methods for note_secret derivation:

• derive_balance_note_secret_internal (balance notes): uses rpo_hash_internal

• derive_note_secret_circuit_internal (vouchers): uses vm_hmerge

Currently the circuit takes note_secret as an input and does not verify its derivation from spending_key.

However, if the circuit is ever updated to validate note_secret derivation in-circuit, balance notes using

derive_balance_note_secret_internal would fail verification because rpo_hash produces different out

puts than vm_hmerge.

Recommendation

Consider using circuit-compatible derivation (vm_hmerge) for all note_secret derivations to ensure forward

compatibility if in-circuit validation is added in the future.

Note

Currently this finding does not pose any threat but it should be kept in mind if “Note secret not cryptograph

ically bound to spending key” was patched severity of this finding would increase and require patching.

Resolution

The development team has addressed this finding in commit 069c281.

Informal Systems © 2026 69

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L398
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L2940
https://github.com/zenrocklabs/zenrock/commit/069c281ba7d42632aa433ff8c527a62847e2c480

Zenrock Q1 2026 Security Audit Report

Duplicate incoming notes not validated
Severity Informational Exploitability None Status Resolved

Type Implementation Impact None

Involved artifacts

• zrchain/clients/hush-wasm/src/lib.rs

• zrchain/contracts/miden-circuits/hush.masm

Description

The generate_account_proof_internal function does not validate that incoming notes are unique before

generating a proof. While the chain-side validation in x/hush for unshields (code ref) and for transfers (code

ref) correctly rejects transactions with duplicate incoming nullifiers using a seenNullifiers map, the client

does not perform this check early. This means users who accidentally include duplicate incoming notes will

waste computational resources generating an expensive STARK proof that will be rejected by the chain.

Additionally, the circuit at hush.masm does not cryptographically enforce nullifier uniqueness, relying entirely

on chain-side validation rather than circuit constraints.

Problem scenarios

A user’s wallet experiences a synchronization bug or database corruption that causes the same incoming

note to appear multiple times in their local state. When attempting to spend their funds, the wallet constructs

a transaction including this note multiple times in the incoming_notes_json array. The hush-wasm client

proceeds to generate a proof without detecting the duplication, which involves expensive cryptographic

operations (STARK proving for the circuit). The proof generation succeeds because the circuit accumulates

the duplicate amounts without checking uniqueness. However, when the transaction reaches the chain, the

x/hush message handler detects the duplicate nullifiers and immediately rejects the transaction. The user

has wasted time and computational resources generating a proof that was doomed to fail, and receives a

cryptic error message without understanding what went wrong with their wallet state.

Recommendation

• In generate_account_proof_internal, after parsing the incoming notes array, add early validation to

detect duplicates by checking that all commitment values are unique.

• While the chain already validates uniqueness, the circuit could enforce this cryptographically by adding

pairwise nullifier comparison checks after the incoming notes loop at hush.masm. However, given the chain

already validates this, the cost-benefit tradeoff may favor keeping this validation chain-side only.

Resolution

The development team has addressed this finding in commit 16480dc.

Informal Systems © 2026 70

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L98-L115
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L535-L551
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L535-L551
https://github.com/zenrocklabs/zenrock/commit/16480dca37609eebd948cad8c1e8c009dd44b096

Zenrock Q1 2026 Security Audit Report

Viewing key lifetime leak
Severity Informational Exploitability None Status Resolved

Type Design Impact None

Involved artifacts

• docs/guides/hush-protocol-overview.md

Description

If you share a viewing key once, the auditor can keep scanning your incoming notes forever. That’s basically

a permanent visibility grant, and if their data gets leaked you can be doxxed. There’s also no clean way to

prove if a leak happened.

Problem scenarios

• Auditor keeps old keys and monitors you indefinitely.

• Key leaks years later → retroactive exposure.

• No easy “proof of leak” or revocation other than moving funds.

Recommendation

Call this out as a privacy tradeoff in the docs. Suggest rotating to a new wallet for a clean break, and consider

short‑lived viewing keys or scoped keys (time/amount limits) if we want better privacy ergonomics.

Resolution

The development team acknowledged this finding and explicitly documented recommendations for secure

usage of the viewing key (ref). Users are informed of the persistence nature of the key, and they may use it

only specifically for compliance and auditing purposes. This design mirrors the well-established approach

used by Zcash and other privacy-preserving systems.

Informal Systems © 2026 71

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/docs/guides/hush-protocol-overview.md#privacy-properties
https://github.com/zenrocklabs/zenrock/blob/c3b02182623638c10a80ba076dd8c143b7beafbb/zrchain/docs/hush-privacy.md?plain=1#L311-L326

Zenrock Q1 2026 Security Audit Report

Miscellaneous findings on hush-wasm
Severity Informational Exploitability None Status Reported

Type Implementation Impact None

Involved artifacts

• zrchain/clients/hush-wasm/src/lib.rs

High

• No overflow checks when computing balances (code ref).

• Avoid leaking private info via Err propagation. If possible, use &'static str for error strings.

• Avoid using unwraps or unwrap_ors.

• Careful when using getrandom (code ref). We shouldn’t rely on platform specific entropy generation. Better

to rely on hash of spending_key (main source of entropy), transaction sequence, CHAIN_ID and domain

tags to generate entropy.

Medium

• Careful about unbounded data. Validate all inputs for its length. We would suggest to implement everything

in fixed length bytes and have glue code that deals with &[u8] and Vec<u8> for wasm boundary.

• rand label is too generic (code ref).

• There are still some zerorize calls missing.

‣ We recommend using proper structs with ZeroizeOnDrop auto derivation to automatically zerorize()

calling (ref).

‣ ZeroizeOnDrop is recommended because of pitfalls like — returning early due to Error propagation

(example) which forgets to call zeroize().

• Check length of deserialised note_secret and randomness values for balance_note (code ref) and

incoming_notes (code ref).

Low

• Fix all cargo clippy warnings.

• Use let fixed_bytes = [u8: CONST_SIZE] = value.try_into() for fixed length bytes.

• Use proper structs to deserialize JSON data using serde_json::Value.

• Use &str or enums for error types.

• Validate byte size directly on hex string, before hex::decode to avoid unnecessary decoding.

• Use cfg!(feature = "prover") instead of #[cfg(feature = "prover")] (code ref).

• Move loop-independent code blocks out of loop. For example, this code block doesn’t depend of seq loop

variable.

• Instead of serde_value::Value[KEY].as_str() use proper deserializable struct.

• To append a vector with empty/zero values, use Vec::resize_with (code ref 1, code ref 2).

• Careful when using Vec::with_capacity—it doesn’t match in some cases (code ref 1, code ref 2, code

ref 3).

Informal Systems © 2026 72

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3185-L3187
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3254
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3290
https://docs.rs/zeroize/latest/zeroize/#custom-derive-support
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L1559-L1561
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3674-L3679
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3704-L3709
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3006-L3011
https://www.notion.so/ZenRock-Q1-2026-Hush-privacy-protocol-2e5d212b18c3805aadfbecbc0affe4f5?pvs=21
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3700-L3736
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L7250-L7256
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3275
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3288
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3302
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3302

Zenrock Q1 2026 Security Audit Report

• Use as_chunks::<SIZE>() over chunks(SIZE). Careful when discarding remainder (code ref).

• Add mutation tests.

• Keep code linear. Instead of if let Some(value) = wrapped_value {...} try to use

let Some(value) = wrapped_value else { // other branch } (same of Ok(value) too).

• Modularize the lib.rs file according to the usage and importance.

• Public function pub fn rpo_hash (code ref) should be calling the private function fn rpo_hash_internal

(code ref) instead of duplicating the logic.

• Function fn derive_viewing_keypair_internal (code ref) is only used for tests, it should live in the tests

module.

• This comment is misleading. It should say: “nullifier_key - 32-byte nullifier key (derived from spending_key,

part of full viewing key)”

Resolution

Security-critical input validation and overflow issues were fixed. Zeroization of fields and secret leaks through

logs are handled.

Informal Systems © 2026 73

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3053-L3056
http://lib.rs
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L546-L564
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L254-L271
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L1535
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L601

Zenrock Q1 2026 Security Audit Report

Miscellaneous findings in hush.masm
Severity Informational Exploitability None Status Resolved

Type Implementation Impact None

Unconstrained asset value

Asset is only validated to be non-zero (code ref). Asset values are used in commitment computation but

never validated against a list of valid assets.

Recommendation: Sanitise asset value (code ref) before inserting in advice tape. Ideally do also range

check in circuit.

Resolution: The development team addressed this recommendation in PR #913.

No validation of incoming_count

Count is loaded (code ref) but never used.

Recommendation: Consider removing it if not needed.

Resolution: The development team addressed this recommendation in PR #869.

Informal Systems © 2026 74

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L328-L334
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/clients/hush-wasm/src/lib.rs#L3661
https://github.com/zenrocklabs/zenrock/pull/913
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-circuits/hush.masm#L344-L346
https://github.com/zenrocklabs/zenrock/pull/869

Zenrock Q1 2026 Security Audit Report

Miscellaneous comments on x/hush
Severity Informational Exploitability None Status Reported

Type Implementation Impact None

Recommendations

High

• Implement the Cosmos SDK ValidateBasic to validate the Unshield and ShieldTransfer message fields.

• Use a cached context in PreBlocker and only write the changes (i.e., writeCaches) at the end to prevent

future-code changes from introducing bugs (e.g., having a successful AddCommitment but then failing to

add the voucher in the store in the processing of shield events).

• It is not clear why MsgUnshield and MsgShieldedTransfer have both the balance nullifier and the

has_balance_note fields because just having nullifier could point to whether we have a balance note

(e.g., if nullifier is not all zeros). Additionally, if there is no balance note, balanceNullifier is set to

zeros, nevertheless msg.Nullifier that might not be all zeros is passed in UnshieldRequestParams and

ShieldedTransfer that can lead to inconsistencies.

• Regarding migrations, since there is no upcoming migration, we did not audit migration code. However,

looking at the v13 migration it is important to note that this migration does not interact with the Merkle tree,

potentially leaving unused commitments in the tree. Also, clearing the processed shield events might lead

to creating duplicate vouchers for the same shielding. Our recommendation is to be extremely cautious

when migrating x/hush state to make sure it remains consistent with what is in the Merkle tree. Additionally

during migrations, hard forks, etc. take extreme care when handling nullifiers to avoid reseting them.

• We understand the benefit of the *admin authority* account but it slightly contradicts a potential decen

tralization argument. We recommend making it clear on who owns this account (e.g., multi-sig, etc.).

Additionally, in a disaster scenario, even if such an account exists, the account might not be extremely

helpful if a lot of time is needed to fix a contract, upload a contract etc. It might also make sense to start

with a smaller-fixed set of trusted validators that can help with stopping chain, fast migrations, etc.

• msg.Nullifier is passed in UnshieldRequestParams and shieldedTransfer even though a different

balanceNullifier might have been used in case !msg.HasBalanceNote (e.g., see here) leading to incon

sistencies. Make sure to use the same balanceNullifier across your Unshield and ShieldedTransfer

methods.

Low

• Instead of doing nullifierHex := string(nullifier) use hex.EncodeToString as is done everywhere

else where the nullifierHex is computed.

• Remove status from VoucherStatus since it is not used.

• Refrain from iterating over maps in InitGenesis (i.e., nullifiers) to prevent non-determinism.

• Unused code can be removed:

‣ realNullifierCount;

‣ buildUnshieldPublicInputs, ComputeCommitment, ComputeNullifier, and RpoHash.

‣ UnveilID store in theNullifierStore

Informal Systems © 2026 75

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/validation/keeper/abci_hush.go#L19
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L173
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L173
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L173
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L276
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L740
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/migrations/v13/store.go
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/migrations/v13/store.go#L101
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L32
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L278
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L173
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L110
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/proto/zrchain/hush/types.proto#L55
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/proto/zrchain/hush/genesis.proto#L31
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L100
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/msg_server.go#L376
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go#L329
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go#L329
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/merkle.go#L329
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/x/hush/keeper/keeper.go#L479-L483

Zenrock Q1 2026 Security Audit Report

Miscellaneous findings on CW contracts
Severity Informational Exploitability None Status Resolved

Type Implementation Impact None

• While the unbounded root history storage does not pose a security risk or affect query performance,

adding an admin-gated cleanup function to the miden-merkle contract (code ref) would enable storage

optimization for long-running deployments. A simple execute_prune_root_history() function restricted

to the admin could accept a keep_recent parameter to retain only the most recent N roots or roots newer

than a specified block height, removing ancient historical data that is unlikely to be referenced. This would

be purely optional maintenance, operators who prefer complete historical provenance can simply never

invoke it, while those optimizing for storage costs can periodically prune entries beyond their compliance

requirements. The function should enforce minimum retention (e.g., at least HISTORY_SIZE entries) to

prevent accidental deletion of roots within the active validity window. This issue has been addressed by

the development team in PR #869 and PR #901.

• The outputs parameter in the sudo_verify() function (code ref) uses an unnecessarily nested

Vec<Vec<u64>> structure, despite the underlying StackOutputs::new() function requiring only a single

Vec<u64> (code ref). The implementation silently uses only outputs[0] and discards any additional

vectors, creating potential developer confusion during integration. While this API design flaw does not

introduce security vulnerabilities, it represents a code quality issue that could lead to misuse or incorrect

assumptions about the verification interface. A simplified Vec<u64> parameter would improve clarity and

reduce the risk of integration errors. This issue has been addressed by the development team in PR #846.

• The inputs parameter in the sudo_verify() function (code ref) relies on Miden’s

StackInputs::try_from_ints(), which silently pads input vectors up to 16 elements with zeros. While

this cannot be exploited maliciously, it can mask programming errors where the wrong number of public

inputs is passed, leading to cryptic verification failures. Adding explicit input count validation at both

the keeper layer (len(publicInputs) != 8) and contract layer would provide fail-fast behavior with clear

error messages, making integration bugs immediately obvious. This issue has been addressed by the

development team in PR #869.

• The sudo_add_commitment() function (code ref) lacks an explicit validation check to reject

commitments that equal the empty_leaf() value (the RPO hash of [0,0,0,0]), which serves

as the default placeholder for unoccupied leaf positions in the sparse Merkle tree. If such

a collision were to occur, it would create semantic ambiguity where a stored commitment

produces the same Merkle root as an unoccupied position. Adding a simple equality check

if commitment == word_to_bytes(&empty_leaf()) { return Err(...) } would provide defense-in-

depth at negligible gas cost, eliminating any theoretical semantic confusion, though it offers no practical

security benefit, given the collision resistance guarantees, and should be considered a code clarity

improvement rather than a vulnerability fix. This issue has been addressed by the development team in

PR #869.

Informal Systems © 2026 76

https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs
https://github.com/zenrocklabs/zenrock/pull/869
https://github.com/zenrocklabs/zenrock/pull/901
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-verifier/src/contract.rs#L63
https://github.com/0xMiden/miden-vm/blob/next/core/src/stack/outputs.rs#L35
https://github.com/zenrocklabs/zenrock/pull/846
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-verifier/src/contract.rs#L62
https://github.com/zenrocklabs/zenrock/pull/869
https://github.com/zenrocklabs/zenrock/blob/6f555b992a752918e6ece20fa3d323de7a6b4298/zrchain/contracts/miden-merkle/src/contract.rs#L214
https://github.com/zenrocklabs/zenrock/pull/869

Zenrock Q1 2026 Security Audit Report

Appendix: Vulnerability Classification
For classifying vulnerabilities identified in the findings of this report, we employ the simplified version of

Common Vulnerability Scoring System (CVSS) v3.1, which is an industry standard vulnerability metric. For

each identified vulnerability we assess the scores from the Base Metric Group, the Impact score, and the

Exploitability score. The Exploitability score reflects the ease and technical means by which the vulnerability

can be exploited. That is, it represents characteristics of the thing that is vulnerable, which we refer to formally

as the vulnerable component. The Impact score reflects the direct consequence of a successful exploit, and

represents the consequence to the thing that suffers the impact, which we refer to formally as the impacted

component. In order to ease score understanding, we employ CVSS Qualitative Severity Rating Scale, and

abstract numerical scores into the textual representation; we construct the final Severity score based on the

combination of the Impact and Exploitability sub-scores.

As blockchains are a fast evolving field, we evaluate the scores not only for the present state of the system,

but also for the state that deems achievable within 1 year of projected system evolution. E.g., if at present

the system interacts with 1-2 other blockchains, but plans to expand interaction to 10-20 within the next year,

we evaluate the impact, exploitability, and severity scores wrt. the latter state, in order to give the system

designers better understanding of the vulnerabilities that need to be addressed in the near future.

Impact Score

The Impact score captures the effects of a successfully exploited vulnerability on the component that suffers

the worst outcome that is most directly and predictably associated with the attack.

Informal Systems © 2026 77

https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/specification-document#2-3-Impact-Metrics
https://www.first.org/cvss/specification-document#2-1-Exploitability-Metrics
https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale

Zenrock Q1 2026 Security Audit Report

Impact Score Examples

🟠 High Halting of the chain; loss, locking, or unautho

rized withdrawal of funds of many users; arbitrary

transaction execution; forging of user messages /

circumvention of authorization logic

🟡 Medium Temporary denial of service / substantial un

expected delays in processing user requests

(e.g. many hours/days); loss, locking, or unau

thorized withdrawal of funds of a single user /

few users; failures during transaction execution

(e.g. out of gas errors); substantial increase in node

computational requirements (e.g. 10x)

🟢 Low Transient unexpected delays in processing user

requests (e.g. minutes/a few hours); Medium

increase in node computational requirements

(e.g. 2x); any kind of problem that affects end users,

but can be repaired by manual intervention (e.g. a

special transaction)

🔵 None Small increase in node computational requirements

(e.g. 20%); code inefficiencies; bad code prac

tices; lack/incompleteness of tests; lack/incom

pleteness of documentation

Exploitability Score

The Exploitability score reflects the ease and technical means by which the vulnerability can be exploited;

it represents the characteristics of the vulnerable component. In the below table we list, for each category,

examples of actions by actors that are enough to trigger the exploit. In the examples below:

• Actors can be any entity that interacts with the system: other blockchains, system users, validators,

relayers, but also uncontrollable phenomena (e.g. network delays or partitions).

• Actions can be

‣ legitimate, e.g. submission of a transaction that follows protocol rules by a user; delegation/redelegation/

bonding/unbonding; validator downtime; validator voting on a single, but alternative block; delays in

relaying certain messages, or speeding up relaying other messages;

‣ illegitimate, e.g. submission of a specially crafted transaction (not following the protocol, or e.g. with

large/incorrect values); voting on two different alternative blocks; alteration of relayed messages.

• We employ also a qualitative measure representing the amount of certain class of power (e.g. possessed

tokens, validator power, relayed messages): small for < 3%; medium for 3-10%; large for 10-33%, all for

>33%. We further quantify this qualitative measure as relative to the largest of the system components.

(e.g. when two blockchains are interacting, one with a large capitalization, and another with a small

Informal Systems © 2026 78

Zenrock Q1 2026 Security Audit Report

capitalization, we employ small wrt. the number of tokens held, if it is small wrt. the large blockchain, even

if it is large wrt. the small blockchain)

Exploitability Score Examples

🟠 High illegitimate actions taken by a small group of actors;

possibly coordinated with legitimate actions taken

by a medium group of actors

🟡 Medium illegitimate actions taken by a medium group of

actors; possibly coordinated with legitimate actions

taken by a large group of actors

🟢 Low illegitimate actions taken by a large group of actors;

possibly coordinated with legitimate actions taken

by all actors

🔵 None illegitimate actions taken in a coordinated fashion

by all actors

Severity Score

The severity score combines the above two sub-scores into a single value, and roughly represents the

probability of the system suffering a severe impact with time; thus it also represents the measure of the

urgency or order in which vulnerabilities need to be addressed. We assess the severity according to the

combination scheme represented graphically below.

As can be seen from the image above, only a combination of high impact with high exploitability results in

a Critical severity score; such vulnerabilities need to be addressed ASAP. Accordingly, High severity score

receive vulnerabilities with the combination of high impact and medium exploitability, or medium impact, but

high exploitability.

Informal Systems © 2026 79

Zenrock Q1 2026 Security Audit Report

Severity Score Examples

🔴 Critical Halting of chain via a submission of a specially

crafted transaction

🟠 High Permanent loss of user funds via a combination

of submitting a specially crafted transaction with

delaying of certain messages by a large portion of

relayers

🟡 Medium Substantial unexpected delays in processing user

requests via a combination of delaying of certain

messages by a large group of relayers with coordi

nated withdrawal of funds by a large group of users

🟢 Low 2x increase in node computational requirements via

coordinated withdrawal of all user tokens

🔵 Informational Code inefficiencies; bad code practices; lack/

incompleteness of tests; lack/incompleteness of

documentation; any exploit for which a coordinated

illegitimate action of all actors is necessary

Informal Systems © 2026 80

Zenrock Q1 2026 Security Audit Report

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability, etc.) set forth in the associated Services Agreement. This

report provided in connection with the Services set forth in the Services Agreement shall be used by the

Company only to the extent permitted under the terms and conditions set forth in the Agreement.

This audit report is provided on an “as is” basis, with no guarantee of the completeness, accuracy, timeliness

or of the results obtained by use of the information provided. Informal has relied upon information and

data provided by the client, and is not responsible for any errors or omissions in such information and

data or results obtained from the use of that information or conclusions in this report. Informal makes no

warranty of any kind, express or implied, regarding the accuracy, adequacy, validity, reliability, availability

or completeness of this report. This report should not be considered or utilized as a complete assessment

of the overall utility, security or bugfree status of the code.

This audit report contains confidential information and is only intended for use by the client. Reuse or

republication of the audit report other than as authorized by the client is prohibited.

This report is not, nor should it be considered, an “endorsement”, “approval” or “disapproval” of any particular

project or team. This report is not, nor should it be considered, an indication of the economics or value of

any “product” or “asset” created by any team or project that contracts with Informal to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free nature

of the technology analyzed, nor does it provide any indication of the client’s business, business model

or legal compliance. This report should not be used in any way to make decisions around investment or

involvement with any particular project. This report in no way provides investment advice, nor should it be

leveraged as investment advice of any sort.

Blockchain technology and cryptographic assets in general and by definition present a high level of ongoing

risk. Client is responsible for its own due diligence and continuing security in this regard.

Informal Systems © 2026 81

	Audit Overview
	The Project
	Scope of this report
	Audit plan
	Conclusions

	System Overview
	Hush privacy protocol
	System architecture

	Components
	hush-wasm library
	x/hush module
	Miden ZK circuits
	miden-merkle contract
	miden-verifier contract

	Audit Dashboard
	Target Summary
	Engagement Summary
	Severity Summary

	Threat Model
	Property HUSH-01: Each voucher (commitment) can only be spent (transferred or withdrawn) exactly once
	Property HUSH-02: If a user deposits amount Q of asset type A, then a spendable commitment is created that cryptographically binds the correct amount Q and asset type A, and only the depositor (holding the corresponding spending key) can spend it
	Property HUSH-03: If a user submits a valid unshield proof for amount Q of asset type A with fee F, then after state transitions are confirmed, the user receives Q tokens of asset type A, the pool balance decreases by Q+F, and the fee F is collected
	Property HUSH-04: If a user submits a valid shielded transfer proof sending amount Q of asset type A with fee F to recipient R, then after state transitions are confirmed, the sender's commitment is nullified, the recipient receives a spendable commitment for Q tokens of asset type A, and the fee F is collected
	Property HUSH-05: Commitments are created only with deposits or as outputs from valid transfers, and nullifiers are added only with withdrawals or as outputs from valid transfers
	Property HUSH-06: The global supply accounting invariant TotalShielded + PendingUnshields + TotalUnshielded + TotalFeesBurned = Total Ever Shielded always holds after any state transition
	Property HUSH-07: If a voucher record exists with commitment C, then commitment C exists in the Merkle tree at some leaf position, and sum of all spendable voucher amounts equals (total shielded) - (total unshielded) - (total fees collected)
	Property HUSH-08: Only a user who knows the complete commitment pre-image (note secret, randomness, amount, asset) and holds the spending key from which the nullifier key is derived can spend that commitment
	Property HUSH-09: If a user has spending key SK, then only holders of keys derived from SK can decrypt voucher amounts: spending key holder (full access), full viewing key holder (decrypt only, no spend), incoming viewing key holder (decrypt received only), no key holder (see only encrypted data)
	Property HUSH-10: If a user performs a shielded transfer of amount Q from commitment C1 to recipient R, observers cannot determine recipient's identity, amount Q being transferred, or which commitment C1 is being spent
	Property HUSH-11: All protocol components correctly integrate with Miden VM and produce cryptographic results (commitments, nullifiers, hashes, Merkle paths) that are consistent with Miden VM circuit behavior
	Property HUSH-12: The Merkle tree implementation provides sound membership proofs: valid proofs are accepted for leaves in the tree, and no valid proof exists for leaves not in the tree; the tree preserves insertion order and historical roots
	Property HUSH-13: All message fields are validated before processing
	Property HUSH-14: Queries are properly constructed with valid parameters, execution errors are handled correctly, and responses are correctly interpreted by the caller
	Property HUSH-15: Wallet signatures used for key hierarchy derivation are treated as secrets and never persisted, logged, or transmitted
	Property HUSH-16: Private keys (spending, nullifier, viewing) are never leaked through explicit channels (logging, network transmission, plaintext storage) or side-channels (timing, cache behavior)

	Findings
	Unshield recipient address not cryptographically bound to ZK proof
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Note secret and randomness not cryptographically bound to spending key
	Involved artifacts
	Description
	Problem scenarios
	Double-spend balance note
	Double-spend of stealth transfer incoming notes

	Recommendation
	Resolution

	Cross-asset theft vulnerability
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Circumventing fees
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Reusing balance nullifier
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Hardcoded note sequence limit
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Integer overflow in balance accumulation
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Unsanitized u64 as field element
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Missing shared secret validation
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resoultion

	Stealth recovery mismatch
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Missing message validation in x/hush handlers
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Cross-chain linkability
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Mempool proof replay attack
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Missing tree depth validation makes the contract unusable
	Involved artifacts
	Description
	Test

	Problem scenarios
	Recommendation
	Resolution

	Lack of confirmation during admin updates
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Nullifier key derivation mismatch in account recovery
	Involved artifacts
	Description
	Test

	Problem scenarios
	Recommendation
	Resolution

	Erroneous supply stats
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Unbounded Merkle Depth (DoS vector)
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Unbounded JSON string (DoS vector)
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Missing host-side new balance validation (DoS vector)
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Silent recipient string truncation
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	AddCommitment overwrites
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Missing check for leaf_index
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Commitment field ordering inconsistency
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Duplicate vouchers compute wrong balance
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Missing integer overflow check in x/hush module
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Note secret derivation inconsistency between balance notes and vouchers
	Involved artifacts
	Description
	Recommendation
	Note
	Resolution

	Duplicate incoming notes not validated
	Involved artifacts
	Description
	Problem scenarios
	Recommendation

	Resolution

	Viewing key lifetime leak
	Involved artifacts
	Description
	Problem scenarios
	Recommendation
	Resolution

	Miscellaneous findings on hush-wasm
	Involved artifacts
	High
	Medium
	Low
	Resolution

	Miscellaneous findings in hush.masm
	Unconstrained asset value
	No validation of incoming_count

	Miscellaneous comments on x/hush
	Recommendations
	High
	Low

	Miscellaneous findings on CW contracts

	Appendix: Vulnerability Classification
	Impact Score
	Exploitability Score
	Severity Score

	Disclaimer

